Bài 12: Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên
BC lấy M sao cho BM = BA.
a) Chứng minh ΔBEA = ΔBEM.
b) Cho 𝐴𝐵𝐶 ̂ = 700 . 𝑇í𝑛ℎ 𝐵𝐸𝐴 ̂ ?
c) Từ C kẻ đường thẳng vuông góc với BC cắt tia BE tại N. Chứng minh 𝑀𝐸𝐶 ̂ = 𝐸𝐶𝑁 ̂ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEA và ΔBEM có
BE chung
\(\widehat{EBA}=\widehat{EBM}\)
BA=BM
Do đó: ΔBEA=ΔBEM
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ta có: ΔABD=ΔEBD
nên DA=DE
mà BA=BE
nên BD là đường trung trực của AE
hay BD⊥AE
mình không biết vẽ hình nên bạn tự vẽ nha
a) có :BD là tia phân giác của góc ABC
=> góc ABD = góc DBC hay góc ABD = góc DBE
xét △ABD và △EBD có :
AB=EB
góc ABD = góc DBE
DB là cạnh chung
=> △ABD=△EBD(c.g.c)
b) có : △ABD=△EBD => AD=ED
=>D ∈ đường trung trực của EA
có AB=EB => B thuộc đường trung trực của EA
=> BD là đường trung trực của EA
=> BD⊥EA hay BH⊥EA
c) có : △ABD=△EBD => góc ADB= góc BDE(1)
có AK// BD
=> góc ADB= góc KAD(SLT)(2)
và góc AKD= góc BDE(ĐV)(3)
từ (1),(2),(3) => góc KAD= góc AKD
=> △ADK cân tại D
=> DA=DK
mà AD=DE =>DE=DK=AD
=> D là trung điểm của EK
d) có : góc BDA= góc DBC+góc C ( vì là góc ngoài) và góc ABD=góc DBC
=>góc DBA=góc ABD+góc C
=>góc DBA<góc ABD
trong △ABD có :góc DBA<góc ABD
=> AD<AB( quan hệ giữa cạnh và góc đối diện)
lại có AD=DK=DE
=> AB>DK
=>AB+AB>DK+DK
=>2AB>DK+DE
=>KE<2AB
nếu có chỗ sai mong thầy cô và các bạn trong hoc24 giúp mình sửa giúp để mình có thể giỏi hơn
a) XÉT\(\Delta ABE\)VÀ \(\Delta MBE\)
AB=BM
BE chung =>\(\Delta ABE=\Delta MBE\left(c-g-c\right)\)
^ABE=^MBE
b) => ^A=^EMB=\(90^0\)
\(\Rightarrow EM\perp BC\)
c) Ta có ^A + ^ABC + ^C =\(180^0\)
=>^ABC = \(180^0-\)^A -- ^C = \(90^0-\)^C (1)
Ta lại có ^EMC + ^MEC + ^C =\(180^0\)
=> ^MEC =\(180^0-\)^EMC -- ^C =\(90^0-\) ^C (2)
Từ (1) và (2) => ^ABC=^MEC
a) Xét \(\Delta BEA\)và \(\Delta BEM\)có:
\(BA=BM\left(gt\right)\)
\(\widehat{ABE}=\widehat{MBE}\)( do BE là tia phân giác \(\widehat{ABC}\))
BE là cạnh chung
\(\Rightarrow\Delta BEA=\Delta BEM\left(c.g.c\right)\)
b) Vì \(\Delta BEA=\Delta BEM\left(cmt\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{BME}\left(=90^0\right)\)
\(\Rightarrow EM\perp BC\)
c) Theo định lý tổng 3 góc trong 1 tam giác ta có:
\(\hept{\begin{cases}\widehat{MEC}+\widehat{ECM}+\widehat{EMC}=180^0\\\widehat{BAC}+\widehat{ABC}+\widehat{BCA}=180^0\end{cases}}\)
Mà \(\widehat{BAC}=\widehat{EMC}\left(=90^0\right)\)
\(\Rightarrow\widehat{ABC}=\widehat{MEC}\)
Bài 3:
a: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hình bình hành
Hình bình hành ABNC có AB=AC
nên ABNC là hình thoi
b: Ta có:ABNC là hình thoi
=>AB//NC
mà D\(\in\)NC
nên AB//CD
Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
=>AD=BC
c: Xét ΔADN vuông tại A có \(DN^2=AD^2+AN^2\)
=>\(DN^2=9^2+12^2=225\)
=>\(DN=\sqrt{225}=15\left(cm\right)\)
Xét ΔAND vuông tại A có AH là đường cao
nên \(AH\cdot ND=AN\cdot AD\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=108/15=7,2(cm)
Bài 4:
a: Xét tứ giác AEMN có
AE//MN
AN//ME
Do đó: AEMN là hình bình hành
Hình bình hành AEMN có AM là phân giác của góc EAN
nên AEMN là hình thoi
b: Ta có; ΔABC cân tại A
mà AM là đường phân giác
nên AM\(\perp\)BC và M là trung điểm của BC
Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
M,N lần lượt là trung điểm của BC,CA
=>MN là đường trung bình của ΔABC
=>MN//AB và MN=AB/2
Ta có: MN=AB/2
MN=MD/2
Do đó: AB=MD
Xét tứ giác ABMD có
DM//AB
DM=AB
Do đó: ABMD là hình bình hành
c: Xét tứ giác AMCD có
N là trung điểm chung của AC và MD
=>AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
d: Để ADCM là hình vuông thì AM=CM
=>AM=BC/2
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)