K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Ta có

   \(a+b+c=6\)

  \(\Leftrightarrow\left(a+b+c\right)^2=36\)

  \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)

   Mà \(a^2+b^2+c^2=ab+bc+ca\)

 Khi đó ta có

     \(3\left(ab+bc+ca\right)=36\)

 \(\Leftrightarrow ab+bc+ca=12\)

  \(\Leftrightarrow\hept{\begin{cases}2ab+2bc+2ca=24\\2a^2+2b^2+2c^2=24\end{cases}}\)

 \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\Leftrightarrow a=b=c=\frac{6}{3}=2\)  ( 1 )

  Thay (1) vào C ta có

        \(C=\left(1-2\right)^{2021}+\left(2-1\right)^{2021}+\left(2-2\right)^{2021}\)

             \(=-1+1+0=0\)

         Vậy ......................

6 tháng 11 2021

\(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=9-2\cdot4=1\)

Do đó \(K=1+2021=2022\)

Câu 1:Giá trị của biểu thức : A = 5 - 2 + 3 - 4 +5 - 6 +...+2021 - 2022 + 2023 là:A.2021                B. 2022                C.1016          D.1006Câu 2:Hình tam giác ABC đều có:A. AB = BC = CA                             C. AB < BC < CAB. AB > BC > CA                             D. Độ dài AB,BC,CA khác nhauCâu 3:Tập hợp A các số tự nhiên bao gồm các phần lớn hơn 5 và không vượt quá 8 là:A. A ={6;7}          B. A ={6;7;8}           C. A ={5;6;7;8}         D. A...
Đọc tiếp

Câu 1:Giá trị của biểu thức : A = 5 - 2 + 3 - 4 +5 - 6 +...+2021 - 2022 + 2023 là:
A.2021                B. 2022                C.1016          D.1006
Câu 2:Hình tam giác ABC đều có:
A. AB = BC = CA                             C. AB < BC < CA
B. AB > BC > CA                             D. Độ dài AB,BC,CA khác nhau
Câu 3:Tập hợp A các số tự nhiên bao gồm các phần lớn hơn 5 và không vượt quá 8 là:
A. A ={6;7}          B. A ={6;7;8}           C. A ={5;6;7;8}         D. A ={7;8}
Câu 4:
Hình ảnh không có chú thích
Câu 5:Tìm tổng tất cả số nguyên x,biết:-4 < x < 3
A.-3                   B.0                  C.1                 D.-1
Câu 6:Cho tập hợp M = { 1;5;a;b } Trong các khẳng định sau,khẳng định sai là
A. 1 ∈ M                    B. c ∉ M                  C. a ∈ M              D. b ∉ M
 

4

Câu 2: A

Câu 3: B

Câu 4: D

Câu 5: A

Câu 6: D

5 tháng 1 2022

1c

2a

3b

4c

5a

6d

12 tháng 2 2022

Ta có : \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

\(T=\frac{a^{2021}+b^{2021}+c^{2021}}{\left(a+b+c\right)^{2021}}=\frac{b^{2021}+b^{2021}+b^{2021}}{\left(b+b+b\right)^{2021}}=\frac{3b^{2021}}{\left(3b\right)^{2021}}=\frac{3}{3^{2021}}=\frac{1}{3^{2020}}\)

26 tháng 12 2023

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

NV
31 tháng 1 2021

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

22 tháng 6 2021

thế bạn bt hok

21 tháng 9 2019

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

12 tháng 3 2022

-Mình làm tắt được không bạn :/?

12 tháng 3 2022

-Sợ bạn không hiểu thôi.

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)