cho tứ giác abcd nội tiếp đường tròn (o), ab cắt cd tại e, ad cắt bc tại f. gọi ex,fy thứ tự là phân giác góc bec và góc dfc. chứng minh ex vuông góc với fy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc HKA+góc HFA=180 độ
=>HKAF là tứ giác nộitiếp
b: góc EIK>góc KIA=góc KEA
a: góc HKA+góc HFA=180 độ
=>HKAF là tứ giác nộitiếp
b: góc EIK>góc KIA=góc KEA
Sửa đề: Hai đường chéo BD và AC cắt nhau tại E
góc ACD=1/2*sđ cung AD=90 độ
góc EFD+góc ECD=180 độ
=>EFDC nội tiếp
a: Xét tứ giác MNBD có
\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)
=>MNBD là tứ giác nội tiếp
=>\(\widehat{NBD}+\widehat{NMD}=180^0\)
mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)
nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)
=>\(\widehat{NMA}=\widehat{CMA}\)
=>MA là phân giác của góc NMC
b: Ta có: NBDM là tứ giác nội tiếp
=>\(\widehat{DBM}=\widehat{DNM}\)
=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MAC}\) là góc nội tiếp chắn cung MC
Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)
Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)
=>\(\widehat{ENM}=\widehat{EAM}\)
=>ANME là tứ giác nội tiếp
=>\(\widehat{AEM}+\widehat{ANM}=180^0\)
=>\(\widehat{AEM}=90^0\)
=>ME\(\perp\)AC
a, xét (O) có gBAD nội tiếp đường tròn
=>gBAD=90độ=> EA vuông góc FD
gBCD nội tiếp đường tròn
=>gBCD=90độ => FC vuông góc DE
xét tgDEF có EA là đường cao
FC là đương cao
EA cắt FC tại B
=> B là trực tâm của tg
=>DB là đường cao
=> DB vuông góc EF
b,xét tgABF và tgCBE có gBAF=gBCE = 90độ
gABF=gCBE (hai góc đối đỉnh)
=> tgABF ~ tgCBE (g.g)
=> BA/BC= BF/BE
=>BA.BE=BC.BF
c, bn xem lại giùm mk điểm H là điểm nào