(1/6-1) x (1/10-1) x (1/15-1) x ........ x (1/1990-1)
giúp mình tiếp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-1/3).(1-1/6).(1-1/10)...(1-1/780) (ko có dấu "...")
Giải: (1-1/3).(1-1/6).(1-1/10)...(1-1/780)
= 2/3 . 5/6....779/780
= 4/6 . 10/12.....1558/1560
= 1.4 . 2.5 .... 38.41/ 2.3 . 3. 4. .....39.40
= ( 1.2.3....38).(4.5....41)/(2.3.4....39)(3...
triệt tiêu xong còn 41/39.3= 41/117
ĐS = 41/117
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)
1.
7/15:(1/2-9/10xX)-1/6=13/6
=>7/15:(1/2-9/10xX)=13/6+1/6
=>7/16:(1/2-9/10xX)=7/3
=>1/2-9/10xX=7/16:7/3
=>1/2-9/10xX=3/16
=>9/10xX=1/2-3/16
=>9/10xX=5/16
=>X=5/16:9/10
=>X=25/72
Bài 1
a; \(\dfrac{7}{19}\) x \(\dfrac{1}{3}\) + \(\dfrac{7}{19}\) x \(\dfrac{2}{3}\)
= \(\dfrac{7}{19}\) x (\(\dfrac{1}{3}+\dfrac{2}{3}\))
= \(\dfrac{7}{19}\) x 1
= \(\dfrac{7}{19}\)
b; 15 x \(\dfrac{2121}{4343}\) + 15 x \(\dfrac{212121}{434343}\)
= 15 x \(\dfrac{21}{43}\) + 15 x \(\dfrac{21}{43}\)
= 15 x \(\dfrac{21}{43}\) x (1 + 1)
= 15 x \(\dfrac{21}{43}\) x 2
= (15 x 2) x \(\dfrac{21}{43}\)
= 30 x \(\dfrac{21}{43}\)
= \(\dfrac{630}{43}\)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{2011}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\frac{1}{x+1}=\frac{1}{2011}\)
=>x+1=2011
=>x=2010
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\Rightarrow x+1=2011\Rightarrow x=2010\)
Vậy x=2010