K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

Ta có\(\sqrt{x+4\sqrt{x-4}}\) \(=\sqrt{x-4+4\sqrt{x-4}+4}\)\(=\sqrt{\left(\sqrt{x-4}\right)^2+2.\sqrt{x-4}.2+2^2}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}\)\(=\sqrt{x-4}+2\)

Bằng cách tương tự, ta có: \(\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4}-2\)

\(\Rightarrow\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\)\(=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)\)\(=4\)

Vậy [...]

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )

31 tháng 5 2021

Đk: \(x\ge4\)

\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

TH1:\(\sqrt{x-4}>2\Leftrightarrow x>8\)

\(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

TH2:\(\sqrt{x-4}\le2\Leftrightarrow4\le x\le8\)

\(A=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)=4\)

Vậy...

26 tháng 7 2021

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

26 tháng 7 2021

mình nghĩ ĐKXĐ là như này : 

x+2≥0

➩ x≥-2

có phải k

4 tháng 12 2021

\(c,B< A\\ \Rightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}-2}< \dfrac{\sqrt{x}+1}{\sqrt{x}-2}\\ \Rightarrow\sqrt{x}+4< \sqrt{x}+1\left(vô.lí\right)\)

Vậy không có x nguyên thỏa mãn đề bài

4 tháng 12 2021

Đây bạn nhé
undefined

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

22 tháng 6 2018

\(\left(\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}\right)^2=x-\sqrt{x^2-4}+2\sqrt{\left(x-\sqrt{x^2-4}\right)\left(x+\sqrt{x^2-4}\right)}\)

\(+x+\sqrt{x^2-4}=2x+2\sqrt{x^2-\left(x^2-4\right)}=2x+2\sqrt{x^2-x^2+4}=2x+2\sqrt{4}=2x+4\)

\(\Rightarrow\left(\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}\right)^2=2x+4\)

\(\Rightarrow\sqrt{x-\sqrt{x^2-4}}+\sqrt{x+\sqrt{x^2-4}}=\sqrt{2x+4}\)(đpcm)

NV
18 tháng 3 2021

ĐKXĐ: \(-2\le x\le3\)

\(\dfrac{\sqrt{-x^2+x+6}}{2x+5}-\dfrac{\sqrt{-x^2+x+6}}{x-4}\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+6}\left(\dfrac{1}{2x+5}-\dfrac{1}{x-4}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(-x-9\right)\sqrt{x^2+x+6}}{\left(2x+5\right)\left(x-4\right)}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+6=0\\\dfrac{-x-9}{\left(2x+5\right)\left(x-4\right)}\ge0\end{matrix}\right.\) \(\Leftrightarrow-2\le x\le3\)

Hoặc có thể biện luận như sau:

Ta có: \(\left\{{}\begin{matrix}2x+5>0;\forall x\in\left[-2;3\right]\\x-4< 0;\forall x\in\left[-2;3\right]\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{-x^2+x+6}}{2x+5}\ge0\\\dfrac{\sqrt{-x^2+x+6}}{x-4}\le0\end{matrix}\right.\) ; \(\forall x\in\left[-2;3\right]\)

Do đó nghiệm của BPT là \(-2\le x\le3\)