K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1

1 tháng 1 2022

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=1\)

19 tháng 5 2017

không biet luon

19 tháng 5 2017

Min A = -1 <-> x=2/3

Min B =2 <-> x=0 ; y=1

Max C = 5 <-> x=1/2

Max D = 1/3 <-> x=2

20 tháng 7 2019

a) Ta có : \(1-4x-2x^2=-\left(2x^2+4x-1\right)=-[2(x^2+2x+1)-3]=-[2(x+1)^2-3]\)

Lại có \(2\left(x+1\right)^2\ge0=>-[2(x+1)^2-3]\le-3\)

Dấu"=" xảy ra khi và chỉ khi \(x+1=0=>x=-1\)

Vậy giá trị lớn nhất của biểu thức đã cho bằng -3 khi x=-1

b)\(x^2-4x+y^2+2y-5=\left(x-2\right)^2+\left(y+1\right)^2-10\)

Lại có : \(\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0=>\left(x-2\right)^2+\left(y+1\right)^2-10\ge-10\)

Dấu "=" xảy ra khi và chỉ khi \(x-2=y+1=0=>x=2;y=-1\)

20 tháng 7 2019

\(\text{a) }1-4x-2x^2\)

\(=\left(-2x^2-4x-2\right)+3\)

\(=-2\left(x^2+2x+1\right)+3\)

\(=-2\left(x+1\right)^2+3\)

\(\text{Vì }-2\left(x+1\right)^2\le0\)

\(\text{nên }-2\left(x+1\right)^2+3\le3\)

\(\text{Do đó: }GTLN=3\), dấu bằng  xảy ra khi \(x=-1\)

\(\text{b) }x^2-4x+y^2+2y-5\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)-10\)

\(=\left(x-2\right)^2+\left(y+1\right)^2-10\)

\(\text{Vì }\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0\)

\(\text{nên }\left(x-2\right)^2+\left(y+1\right)^2\ge0\)

\(\text{hay }\left(x-2\right)^2+\left(y+1\right)^2-10\ge-10\)

\(\text{Do đó: }GTNN=-10\), dấu bằng xảy ra tai \(x=2\)và  \(y=-1\)

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

29 tháng 10 2018

29 tháng 12 2016

Đáp số A=-25

29 tháng 12 2016

A = |x - 1| - 25

Ta có :

|x - 1| \(\ge\)0

|x - 1| - 25 \(\ge\)-25

=> MinA = -25

<=> |x - 1| - 25 = -25

<=> |x - 1| = 0

<=> x = 1