tính:
A=(1-1/2).(1-1/3).(1-1/4). ....(1-1/2000)
B=(1+1/2).(1+1/3).(1+1/4). ....(1+1/2000)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 3/2.4/3. ....2001/2000
B = 3.4....2001/2.3....2000
B =2001/2
Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)
bn cộng trên tử rồi thì phải trừ đi chứ ko phân số sẽ thay đổi
a: =6/36+1/3=1/6+1/3=1/6+2/6=3/6=1/2
b: =3/4-1/2=3/4-2/4=1/4
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right)\left(1-\frac{1}{2000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}=\frac{1.2.3...1998.1999}{2.3.4...1999.2000}=\frac{1}{2000}\)
\(\left(1-\frac{1}{2}\right).\left(1.\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)
\(=1.\frac{1}{2000}\)
\(=\frac{1}{2000}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)(Rút gọn trên tử với dưới mẫu nhé)
\(=\frac{1}{2000}\)
vào câu hỏi tương tự nhé
A = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ... . ( 1 - 1/2000)
A = ( 2/2 - 1/2 ) . ( 3/3 - 1/3 ) . ( 4/4 - 1/4 ) . ... . ( 2000/2000 - 1/2000 )
A = 1/2 . 2/3 . 3/4 . ... . 1999/2000
A = 1.(2.3. ... . 1999)/ (2.3.4. ... .1999).2000
A = 1/2000
B = ( 1 + 1/2 ).(1 + 1/3 ).( 1+ 1/4 ). ... .(1+1/2000)
B = ( 2/2 + 1/2 ).(3/3+1/3).(4/4+1/4). ... .(1+1/2000)
B = 3/2.4/3.5/4. ... .2001/2000
B = (3.4.5. ... .2000).2001/2.(3.4. ... .2000)
B = 2001/2
B = 1000,5