K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

Bài 1: 

a: Xét ΔABC có DE//BC

nên AD/AB=AE/AC

30 tháng 3 2020

Qua K vẽ đường thẳng // với AB cắt AC tại H.

=> AHKD là hình bình hành => DK = AH (1)

Gọi giao điểm của AK và DH là O. Vì AHKD là HBH => DO = OH

Xét 3 đường thẳng MA, CA, BA đồng quy tại A cắt 2 đường thẳng DH và BC ta được: DO/OH = BM/MC = 1

=> DH // BC (định lí chùm đường thẳng đồng quy đảo)

Xét ∆ ADH và ∆ FEC có: 

AD = EF ( t/c đoạn chắn) ; DH = EC (t/c đoạn chắn) ; ^ADH = ^FEC => ∆ ADH = ∆ FEC (c-g-c)

=> AH = CF (2)

Từ (1) và (2) => CF = DK (đpcm)

GL

31 tháng 3 2020

Do EF//AB⇒\(\frac{CF}{CA}=\frac{EF}{AB}\)\(\frac{CF}{EF}=\frac{AC}{AB}\)(1)

Dựng MG//AC và MM là trung điểm cạnh BC

⇒GM là đường trung bình ΔABC

=⇒G là trung điểm cạnh AB ⇒AG=BG

Do DK//GM⇒\(\frac{AD}{AG}=\frac{DK}{GM}\)\(\frac{AD}{BG}=\frac{DK}{GM}\)

=> \(\frac{DK}{AD}=\frac{GM}{BG}=\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\frac{CF}{EF}=\frac{DK}{AD}\)

Mà tứ giác ADEF là hình bình hành (vì EF//AD và DE//AF) nên AD=EF

=> CF=DK (đpcm)
Nguồn: thuynga

19 tháng 12 2020

Cứng đờ tay luôn rồi, khổ quá:((

a) Xét \(\Delta DBF\) và \(\Delta FED:\)

DF:cạnh chung

\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)

\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)

Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)

Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)  

Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)

=>\(\widehat{DAE}=\widehat{FEC}\)

Xét \(\Delta DAE\) và \(\Delta FEC:\)

DA=FE(=BD)

\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (cmt)

=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)

=> DE=FC(2 cạnh t/ứ)

=> Đpcm