tìm x \(\in\) R sao cho \(x+\sqrt{2009}\) vs \(\left(\frac{16}{x}\right)-\sqrt{2009}\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2009}=7\sqrt{41}\) DO ĐÓ ĐỂ \(A=x+\sqrt{2009}\in Z\Leftrightarrow x=-\sqrt{2009}\Rightarrow A=0\in Z.\)
ĐỂ \(B=\frac{16}{x}-\sqrt{2009}\in Z\Leftrightarrow\frac{16}{x}=\sqrt{2009}\Leftrightarrow x=\frac{16}{\sqrt{2009}}\Rightarrow B=0\in Z.\)
(KHÔNG CÓ GIÁ TRỊ x NÀO ĐỂ CẢ A VÀ B ĐỒNG THỜI LÀ SỐ NGUYÊN)
à. không đọc hết đề
Đến đoạn \(x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2019}=-y^{2019}\Leftrightarrow x^{2019}+y^{2019}=0\Leftrightarrow x^{2019}+y^{2019}+1=1\)
Hay P=1
Vậy P=1
lm j mà vất vả thế
Nhân cả 2 vế của pt đâu với \(x-\sqrt{x^2+3}\) đc:
\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)
TƯơng tự nhân 2 vế của pt đầu vs \(y-\sqrt{y^2+3}\) đc:
\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)
từ (1) và (2) =>2(x+y)=0
=>x+y=0
=>lm tiếp như trên thôi
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
ta nhân cả 2 vế với \(x+\sqrt{x^2+2008}\)
hay \(y+\sqrt{y^2+2008}\)
Ta phân tích \(10+6\sqrt{3}=3\sqrt{3}+9+3\sqrt{3}+1\) \(=\left(\sqrt{3}\right)^3+3.\left(\sqrt{3}\right)^2.1+3\sqrt{3}.1^2+1^3\) \(=\left(\sqrt{3}+1\right)^3\).
Vì vậy, \(x=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}\right)^2-1=2\)
Vậy \(P=\left(x^3-4x+1\right)^{2009}\)\(=\left(2^3-4.2+1\right)^{2009}\) \(=1\)
\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)
\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)
\(2008x+201840=2009x\Rightarrow x=201840\)
p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha
Boul đẹp trai_tán gái đổ 100% sai 100%
Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840
Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi
Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !