CHo tam giác nhọn ABC, trực tâm H. Tia AH cắt BC ở K. xác định dạng của tam giác ABC để tích KH.KA đạt giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ các đường kính AM, BN, CP của (O). Dễ cm được BMCH, CNAH,APBH là các hình bình hành => AH = CN; BH = CM; CH = BM
=> AH + BH + CH = CN + CM + BM
Vì BC cố định nên CN không đổi => (AH + BH + CH) max khi (CM + BM) max. Ta sẽ cm rằng điều đó xảy ra khi M trùng điểm chính giữa cung nhỏ BC.
Thật vậy gọi Q là điểm chính giữa cung nhỏ BC. Kéo dài BQ đoạn QD = BQ = CQ, kéo dài BM đoạn ME = MC => BD = BQ + CQ = 2BQ và BE = BM + CM
Vì tg CQD cân tại Q => ^BDC = ^QCD = ^BQC/2
Tương tự tg CME cân tại M => ^BEC = ^MCE = ^BMC/2
Mà ^BMC = ^BQC => ^BEC = ^BDC => B,C,D,E cùng thuộc đường tròn đường kính BD => BE =< BD <=> BM + CM =< 2BQ => (BM + CM)
Max = 2BQ xảy ra khi E trùng D hay khi M trùng Q khi đó A là điểm chính giữa cung lớn BC
a: Kẻ BD vuông góc AC,CE vuông góc AB
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng vơi ΔACB
Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC
Gọi H là giao của BD và CE
=>AH vuông góc BC tại N
Gọi giao của OM với (O) là A'
ΔOBC cân tại O
=>OM vuông góc BC
AN<=A'M ko đổi
=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)
Dấu = xảy ra khi A trùng A'
=>A là điểm chính giữa của cung BC
-Sửa đề: Đoạn BC không đổi.
-BH cắt AC tại D.
-Xét △ABC có:
H là trực tâm, AK là đường cao.
\(\Rightarrow\)H∈AK, BH là đường cao.
Mà BH cắt AC tại D (gt)
\(\Rightarrow\)BH⊥AC tại D.
-Xét △HBK và △HAD có:
\(\widehat{BKH}=\widehat{HDA}=90^0\)
\(\widehat{BHK}=\widehat{AHD}\) (đối đỉnh)
\(\Rightarrow\)△HBK∼△HAD (g-g).
-Xét △HBK và △CAK có:
\(\widehat{HKB}=\widehat{CKA}=90^0\)
\(\widehat{HBK}=\widehat{KAC}\)(△HBK∼△HAD)
\(\Rightarrow\)△HBK∼△CAK (g-g).
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KB}{KA}\) (tỉ số đồng dạng)
\(\Rightarrow KH.KA=KB.KC\)
-Gọi M là trung điểm BC \(\Rightarrow MB=MC=\dfrac{BC}{2}\)
\(KH.KA\le\dfrac{BC^2}{4}\)
\(\Leftrightarrow KB.KC\le\left(\dfrac{BC}{2}\right)^2\)
\(\Leftrightarrow\left(MB-MK\right)\left(MC+MK\right)\le MB^2\) (do cách dựng hình)
\(\Leftrightarrow\left(MB-MK\right)\left(MB+MK\right)\le MB^2\)
\(\Leftrightarrow MB^2-MK^2\le MB^2\) (luôn đúng do MK>0)
-Vậy \(KH.KA\le\dfrac{BC^2}{4}\) . Dấu bằng xảy ra khi △ABC cân tại A.