K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

M = 1 / 2.2 + 1 / 3.3 + .... + 1/n.n

M < 1/1.2 + 1/2.3 +.....+ 1/(n-1).n

M < 1 - 1/2 +1/2 -1/3 +......+ 1/n-1 - 1/n

M < 1-1/n < 1

=> M < 1  (dpcm)

13 tháng 11 2023

1.A = 21 + 22 + 23 + 24 + ... + 259 + 260

Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.

vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:

A = (21 + 22) + (23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)

A =2.3 + 23.3  + ... + 259.3

A =3.( 2 + 23+...+ 259)

Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)

 

 

 

13 tháng 11 2023

áp dụng công thức là ra :))))

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

14 tháng 11 2018

1)A=987

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
$\frac{1}{1+2+3+...+n}=\frac{1}{\frac{n(n+1)}{2}}=\frac{2}{n(n+1)}$

$=2.\frac{(n+1)-n}{n(n+1)}=2[\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}]$

$=2(\frac{1}{n}-\frac{1}{n+1})$ (đpcm)

18 tháng 3 2019

Đặt : \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{n\cdot n}\)

\(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{(n-1)\cdot n};M< 1-\frac{1}{n}< 1\)

Bạn có thể tham khảo nhé

24 tháng 6 2015

Đặt A=\(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\)

2A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}\)

2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}-\)\(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\right)\)

A=\(\frac{1}{2}-\frac{1}{2^n}\)

Vì \(\frac{1}{2}-\frac{1}{2^n}\) < \(\frac{1}{2}\)

Mà \(\frac{1}{2}\) < 1

Nên \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\) < 1

=> đpcm

13 tháng 3 2019

Đặt A=122 +123 +124 +...+12n 

2A=12 +122 +123 +...+12n−1 

2A-A=12 +122 +123 +...+12n−1 −(122 +123 +124 +...+12n )

A=12 −12n 

Vì 12 −12n  < 12 

Mà 12  < 1

Nên 122 +123 +124 +...+12n  < 1

=> đpcm

4 tháng 8 2016

(1/2^2)+(1/2^3)+...+(1/2^n)<(1/1.2)+(1/2.3)+(1/3.4)+...+(1/(n+1).n)

=1-1/2+1/2-1/3+1/3-1/4+1/4-....+1/n+1-1/n

=1-1/n<1

suy ra biểu thức trên <1