K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Ta có: \(2006^x=2005^y+2004^z>1\)

\(\Rightarrow x\ge1\)

Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ 

nên \(2004^z\) là số lẻ

\(\Rightarrow z=0\)

Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)

Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\) 

Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.

      Vậy \(x=y=1;z=0\)

21 tháng 8 2016

Có 1 trường hợp là \(x=1;y=1;z=0\)

16 tháng 5 2016

Có 1 trường hợp là : x = 1 ; y = 1 ; z = 0 

16 tháng 5 2016

không có  trường hợp nào  

18 tháng 3 2015

Bài này quá dễ em à

X=1

Y=1

Z=0

23 tháng 2 2015

bài này khó quá mình ko biết giải.có bạn nào biết giải chỉ mình với

 

1 tháng 2 2018

\(\text{Ta có: }A=x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1.\)\(=x^{2005}-\left(2005+1\right)x^{2004}+\left(2005+1\right)x^{2003}-\left(2005+1\right)x^{2002}+...-\left(2005+1\right)x^2+\left(2005+1\right)x-1\)  \(\text{Mà x=2005 nên: }A=x^{2005}-x^{2005}-x^{2004}+x^{2004}+x^{2003}-x^{2003}-x^{2002}+...-x^3-x^2+x^2+x-1\)

  \(=x-1=2005-1=2004\)

16 tháng 8 2019

Ta có: |15/32 - x| ≥ 0; |4/25 - y| ≥ 0; |z - 14/31| ≥ 0

=> |15/32 - x| +|4/25 - y|+ |z - 14/31| ≥ 0

Mà |15/32 - x| +|4/25 - y|+ |z - 14/31| < 0

=> x, y, z ∈ \(\varnothing\)