K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Gọi UCLN(2n+3,2n+5)=d

Ta có:2n+3 chia hết cho d

         2n+5 chia hết cho d

=>(2n+5)-(2n+3) chia hết cho d

=>2 chia hết cho d

=>d={1,2}

Mà 2n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy 2 số (2n+3) và (2n+5) nguyên tố cùn nhau với bất kì số tự nhiên n

25 tháng 3 2016

Gọi UCLN(2n+3,2n+5)=d

Ta có:2n+3 chia hết cho d

         2n+5 chia hết cho d

=>(2n+5)-(2n+3) chia hết cho d

=>2 chia hết cho d

=>d={1,2}

Mà 2n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy 2 số (2n+3) và (2n+5) nguyên tố cùn nhau với bất kì số tự nhiên n

18 tháng 3 2016

k mik CMR rùi mà luwofi viết lắm thông cảm nha!!!leu

18 tháng 3 2016

Gọi ƯCLN(n+3,2n+5) = d

=> n+3 chia hết cho d, 2n+5 chia hết cho d

=> 2(n+3) chia hết cho d, 2n+5 chia hết cho d

=> 2n+6 chia hết cho d,2n+5 chia hết cho d

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d =>đpcm.

23 tháng 3 2018

Gọi d là là ước chung lớn nhất của ( n+3) và ( 2n+5)

Có (n+3) chia hết cho d.Suy ra (n+3)x2 chia hết cho d= (2n+6) chia hết cho d

Có (2n +5) chia hết cho d. Suy ra (2n+ 5) chia hết cho d

Suy ra : (2n+6) - (2n+5) chia hết cho d

               2n+6 - 2n-5 chia hết cho d

               1 chia hết cho d

Có  chia hết cho d suy ra d thuộc{ 1:-1}

Vì d là số tự nhiên nên d =1 

Vậy ( n+3) và (2n+5) là số nguyên tố cùng nhau 

CHÚC BẠN HỌC GIỎI

12 tháng 2 2019

bye mấy anh em nha!

9 tháng 11 2015

Gọi a là ƯCLN ( n+3 ; 2n+5 ) ĐK( n thuộc N(ko biết ghi dấu thuộc)

Ta có n+3 chia hết cho a và 2n+5 chia hết cho a

Suy ra: 2(n+3) chia hết cho a và 2n+5 chia hết cho a

Suy ra: 2n+6 chia hết cho a 

Suy ra: (2n+6)-(2n+5) chia hết cho a 

Suy ra: 1 chia hết cho a 

Suy ra: n+3 và 2n+5 là NTCN

 

 

24 tháng 1 2021

easy game

22 tháng 7 2016

câu 1 :

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

22 tháng 7 2016

bài 1=7

21 tháng 3 2017

n+3 chia hết cho d

2n+5 chia hết cho d

2n+3 chia hết cho d

2n+6 chia hết cho d

2n+6-2n+5 chia hết cho d

(2n-2n)+(6-5)

1 chia hết cho d

=>n+3 và 2n+5 là 2 số nt cùng nhau

tk cho mình nha

2 tháng 10 2023

ủa, tại sao theo đề là có n+3 sao lúc giải lại ghi là 2n+3 còn ko giải thích nữa

22 tháng 12 2015

Gọi d là ƯCLN của n+3 và 2n+5

Ta có: n+3 chia hết cho d

=> 2(n+3) chia hết cho d

=> 2n+6 chia hết cho d

=> 2n+5 chia hết cho d

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d=1

Vậy n+3 và 2n+5 là hai số nguyên tố cùng nhau (vì chúng có ƯCLN là 1).

18 tháng 3 2016

Gọi d là ƯCLN(n+3;2n+5)

Ta có n+3 chia hết cho d; 2n+5 chia hết cho d

=>n+3-2n+5 chia hết cho d

=>2n+6-2n+5=1 chia hết cho d

=>ƯCLN(N+3;2n+5)=1

Vậy n+3 và 2n+5 là 2 nguyên tố cùng nhau

22 tháng 9 2016

Gọi d là ước chung nguyên tố (d thuộc N) của 2n+5 và n+2, ta có:

     (2n+5) chia hết cho d và (n+2) chia hết cho d

Từ (n+2) chia hết cho d   => 2(n+2) cũng chia hết cho d 

Ta có: (2n+5) chia hết cho d và 2(n+2) chia hết cho d   => (2n+5) - 2(n+2) = 1 chia hết cho d

=> d = 1   => 2n+5 và n+2 nguyên tố cùng nhau

9 tháng 10 2016

d=1;

d=1;

d=1.

k cho mình nhé.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.