chứng tỏ rằng 8^2012-8^2011-8^2010 chia hết cho 55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*/ Tổng của 3 số tự nhiên liên tiếp có dạng: a+(a+1)+(a+2)=3a+3=3(a+1) => Luôn chia hết cho 3
*/ 215+424=2.214+2.212=2(214+212) => Luôn chia hết cho 2
*/ \(S1=\frac{2012\left(2012-1\right)}{2}-1-2=2023063\)
*/ \(S2=\frac{2012\left(2012-1\right)}{2}-1=2023065\)
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
ta có :
A chia hết cho 8 do từng hạng tử của A chi hết cho 8
mà \(10^{2012},10^{2011},10^{2010},10^{2009}\text{ chia 3 dư 1}\)
thế nên \(A\text{ đồng dư 1+1 +1 +1 +8 =12 khi chia cho 3}\)
Hay A cũng chia hết cho 3. Vậy A vừa chia hết cho 8 vừa chia hết cho 3 nên A chia hết cho 24