Tìm n ( n là số tự nhiên ) sao cho A= n+19/n+6 là một số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n+19/n+6 là 1 số tự nhiên
=> n+19 chia hết cho n+6 và được kết quả là 1 số tự nhiên
Ta có: n+19 chia hết cho n+6
=> (n+6)+13 chia hết cho n+6
Vì n+6 chia hết cho n+6 => 13 chia hết cho n+6
=> n+6 thuộc Ư(13)={1;13;-1;-13}
Mà vì n là số tự nhiên => n+6=13
=> n=7
A= (n+19)/(n+6)
=> A= (n+6+13)/(n+6)
=> A=1 + 13//(n+6)
để A là số tự nhiên thì (n+6) thuộc ước 13, mà n là số tự nhiên
=> n+6 thuộc tập hợp 1,13
=> n thuộc tập hợp 7
Vậy......
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Ta có S(n) + n = 54
=> n là số có 1 chữ số
= (54 - n) : 10
=> n = 54 : 10
= 5,4
Ps: Không chắc đâu nha
Ta có: S( n ) + n = 54
=> n là số có 1 chữ số
=> ( 54 - n ) : 10
=> n = 54 : 10
= 5,4
Bài nè không bít có được vào CÂU HỎI HAY của OLM không?
1./ Dễ thấy: \(A=3^n+19\)là 1 số chẵn. Nên để A là số chính phương thì A phải chia hết cho 4.
19 chia 4 dư 3 => \(3^n\)chia 4 dư 1 (1)
- Nếu n lẻ = 2i + 1 thì: \(3^{2i+1}=3\cdot\left(3^2\right)^i=3\cdot\left(8+1\right)^i\)chia 4 dư 3 trái với khẳng định (1)
- Vậy n chẵn và có dạng n = 2k.
2./ Bài toán trở thành tìm k để: \(A=3^{2k}+19\)là số chính phương.
Viết lại A ở dạng: \(A=\left(3^k\right)^2+19\)
- k = 0 => A = 20 không phải là số chính phương
- k = 1 => A = 28 không phải là số chính phương
- k = 2 => A = 100 là số chính phương 102
- k >= 3 thì:
\(\left(3^k\right)^2< \left(3^k\right)^2+19=A< \left(3^k\right)^2+2\cdot3^k+1=\left(3^k+1\right)^2\)
A kẹp giữa 2 số chính phương liên tiếp 3k và 3k + 1 nên A không phải là số chính phương.
3./ Kết luận, với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương.