Tỉm một số tự nhiên A có 2 chữ số biết rằng 2A+1 và 3A+1 đều là các số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số có 2 chữ số nên =>9<n<100 =>19<n<201
Mà n là số chính phương lẻ nên => n= 25 ; 49 ; 81; 121; 169
vì chỉ có trường hợp 3n+1=121 (là số chính phương ) thỏa mãn bài ra nên : => n=40
mấy trường hợp n=25;49;81;121;169 bạn tự thử nhé
ta có a có 2 cs
->10<=a<100
->21<=2a+1<201 !à 2a +1 là số lẻ,2a+1 la scp
->2a+1=25;49;81;121;169
->a=12;24;40;60;84
->3a+1=37;73;121;181;252. Mà 3a+1 là scp
->3a+1=121
->a=40
vậy a=40
k cho mk nha
Vì n là số có 2 chữ số nên =>9<n<100 =>19<n<201
Mà n là số chính phương lẻ nên => n= 25 ; 49 ; 81; 121; 169
vì chỉ có trường hợp 3n+1=121 (là số chính phương ) thỏa mãn bài ra nên : => n=40
mấy trường hợp n=25;49;81;121;169 bạn tự thử nhé
a là số tự nhiên >0. Giả sử m,n >0 thuộc Z để:
\(\hept{\begin{cases}2a+1=n^2\left(1\right)\\3a+1=m^2\left(2\right)\end{cases}}\)
Từ (1) => n lẻ; đặt n=2k+1, ta được
2a+1=4k2+4k+1=4k(k+1)+1
=> a=2k(k+1)
Vậy a chẵn
a chẵn => (3a+1) là số lử từ (2) => m lẻ; đặt m=2p+1
(1)+(2) được: 5a+2=4k(k+1)+1+4p(p+1)+1
=> 5a=4k(k+1)+4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
Xét các TH
+) a=5q+1 => n2=2a+1=10q+3 có chữ số tận cùng là 3 (vô lí)
+) a=5q+2 => m2=3a+1=15q+7 có chữ số tận cùng là 7 (vô lí)
+) a=5q+3 => n2=2a+1=10a+7 chữ số tận cùng là 7 (vô lí)
=> a chia hết cho 5
Mà (5;8)=1 => a chia hết cho 5.8=40 hay a là bội của 40
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.