Bài 3: Cho tam giặc ABC yuong tại A co AB - Scm, AC = 12cm Gọi D,M,B
theo thử tự là
la trung địêm của AB, BC và AC
a) Tinh AM
b) Từ giác ADME la hinh gi? Vi sao?
c) AABC cần thêm điều kiện gi đe từ giác ADME là hinh vuông
d) Diện tích AABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhe fen :
a)
Tú giác ADME có:
MD // AB (gt)
ME // AC (gt)
góc A = 90 độ (gt)
=> tứ giác ADME là hình chữ nhật
b)
Vì Tứ giác ADME là hình chữ nhật => Góc MDA = Góc A = Góc MEA = góc EMD = 90 độ ( tính chất hình chữ nhật )
Tam giác ADM có:
Góc MDA = 90 độ
=> Tam giác ADM vuông góc tại D
Áp dụng định lí pitago vào tam giác ADM ta có:
\(AM^2=AD^2+MD^2\Rightarrow MD=8\left(cm\right)\)
c)
Giả sử Tam giác ABC vuông cân:
=> theo bài ra ta có: ME//AC, MD//AB, góc A vuông => Tứ giác ADME là hình chữ nhật (1)
Xét Tam giác ABC có:
ME//AC (gt)
M là trung điểm của BC (gt)
=> ME là đường trung bình của tam giác ABC
=> ME=1/2 AC (tc đường trung bình)
Ta lại có:
tam giác ABC có:
MD//AB (gt)
M là trung điểm của BC (gt)
=> MD là đường trung bình của tam giác ABC
=> MD=1/2AB
Mà Tam giác ABC vuông cân => AC=AB (tính chất tam giác cân)
=> MD=ME=1/2AB=1/2AC (2)
Từ (1) và (2) => Tứ giác ADME là Hình vuông
=> Để tứ giác ADME là hình vuông thì tam giác ABC phải là Tam giác Vuông cân tại A
a Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
a) theo py ta go thì BC = 10 (tự tính nha)
trung tuyến AM thì
AM = BM = MC = 10/2 = 5
câu b từ nha
b) ADME là hình chữ nhật
A = 90
ADM = 90
=> DM \\ AE
A = MEA = 90
=> DA \\ ME
câu c từ nha
3.
Áp dụng định lý Py-ta-go:
\(AB^2+AC^2=BC^2\\ 6^2+8^2=BC^2\\ 36+64=BC^2\\ 100=BC^2\\ BC=10\left(cm\right)\)
Vì \(AM\)là trung tuyến của \(BC\) nên:
\(AM=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)
b,
Xét tứ giác \(ADME\)
có \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\)
\(\Rightarrow\)Tứ giác \(ADME\) là hình chữ nhật
c,
Ta có: \(BM=MC=\dfrac{1}{2}\cdot BC=\dfrac{1}{2}\cdot10=5\)(cm)
Xét \(\Delta AMB\)
Có:
\(AM=MB\left(=5cm\right)\)
\(\Rightarrow\Delta AMB\) là tam giác cân
\(\Rightarrow MD\) là đường trung trực
\(\Rightarrow AD=\dfrac{1}{2}AB\)
Xét \(\Delta AMC\)
Có:
\(AM=MC\left(=5cm\right)\)
\(\Rightarrow\Delta AMC\) là tam giác cân
\(\Rightarrow ME\) là đường trung trực
\(\Rightarrow AE=\dfrac{1}{2}AC\)
Để tứ giác \(ADME\) là hình vuông thì
\(AD=AE\\ \Leftrightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\\ \Rightarrow AB=AC\)
Vậy \(\Delta ABC\) là tam giác vuông cân thì tứ giác \(ADME\) là hình vuông
1) ADME là h.b.h (vì có 2 cặp cạnh đối song song)
2) Vì ADME là hình chữ nhật nên O là trung điểm 2 đường chéo AM và DE.
Xét tam giác AHM vuông tại H, đường trung tuyến HO, khi đó HO = AO = OM
Vậy tam giác AHO cân ở O
3)
a, Tam giác ABC vuông tại A nên ˆDAE=900DAE^=900
Mà ADME là h.b.h nên tứ giác ADME là hình chữ nhật
b, Vì tứ giác AEMD là hình chữ nhật nên ED=AM
Để DE có độ dài nhỏ nhất thì AM có độ dài nhỏ nhất hay M là chân đường vuông góc hạ từ A xuống BC
b: Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
Do đó: EM là đường trung bình
=>EM//AD và EM=AD
hay ADME là hình bình hành
mà AM=ED
nên ADME là hình chữ nhật