K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
$S=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{(n+3)-n}{n(n+3)}$

$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}$

$=1-\frac{1}{n+3}<1$

18 tháng 3 2022

`Answer:`

1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)

\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)

\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)

\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow S>\frac{7}{12}\)

2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)

Ta có:

 \(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)

\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)

\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow S< 1-\frac{1}{2009}< 1\)

\(\Rightarrow S< 1\)

3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)

\(=\frac{1}{5}-\frac{1}{200}\)

\(=\frac{39}{200}\)

23 tháng 4 2017

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1

\(S=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\right)\)

\(S=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\right)\)

\(\Rightarrow S=1-\frac{1}{46}\Rightarrow S< 1\left(đpcm\right)\)

23 tháng 4 2017

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}< 1\)

\(\Rightarrow S< 1\left(đpcm\right)\)

29 tháng 9 2019

qua dễ

29 tháng 9 2019

Xét n lẻ => 7n chia 4 dư 3.

=> 7n + 1 chia hết cho 4.

=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 (n thuộc N lẻ) (1)

Xét n chẵn => 7n chia 4 dư 1.

=> 7n + 3 chia hết cho 4.

=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 (n thuộc N chẵn) (2)

Từ (1) và (2)

=>  (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 với mọi n thuộc N    (đpcm)

7 tháng 10 2017

Bài 1:

a){x-[25-(92-16.5)30.243]-14}=1

=>{x-[25-1.243]-14}=1

=>x-(-13799)-14=1

=>x-(-13813)=1

=>x=1+(-13813)

=>x=-13812

b) (x+1)+(x+2)+....+(x+100)=7450

=>100x+(1+2+...+100)=7450

=>100x+5050=7450

=>x=(7450-5050):100

=>x=24

Bài 2:

S=3+6+...+2016

S=(2016-3):3+1=672 ( số số hạng)

S=(2016+3)x672:2=678384

Bài 3 dài lắm mỏi tay lắm rùi

30 tháng 4 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;