Tìm số tự nhiên n sao cho \(\frac{1}{2}.\frac{5}{6}.\frac{9}{10}...\frac{4n+1}{4n+2}<\frac{1}{2014}<\frac{4}{5}.\frac{8}{9}.\frac{12}{13}...\frac{4n+4}{4n+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
Để \(A=\frac{4n-5}{n+1}\)là số nguyên thì \(4n-5⋮n+1\)
\(\Rightarrow\)\(4\left(n+1\right)-\left(4n-5\right)⋮n+1\)
\(\Rightarrow\)\(4n+4-4n+5⋮n+1\)
\(\Rightarrow\)\(9⋮n+1\)
\(\Rightarrow\)\(n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow\)\(n\in\left\{0;-2;2;-4;8;-10\right\}\)
Để \(A\inℤ\) thì \(\frac{4n-5}{n+1}\inℤ\)
\(\Rightarrow4n-5⋮n+1\)
\(\Rightarrow4x+4-9⋮n+1\)
\(\Rightarrow4\left(n+1\right)-9⋮n+1\)
\(\Rightarrow9⋮n+1\)
Vì \(n\inℕ\) nên \(n+1\inℕ\)
\(\Rightarrow n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng sau:
n + 1 | 1 | 3 | 9 | -1 | -3 | -9 |
n | 0 (thỏa mãn) | 2 (thỏa mãn) | 8 (thỏa mãn) | -2 (loại) | -4 (loại) | -10 (loại) |
Vậy \(n\in\left\{0;2;8\right\}\) thì \(A\inℤ\).
\(M=\frac{5n+185+2n+1+n+7}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)
n là số tự nhiên thì (4n+3)>3
Để M là 1 số tự nhiên thì 187 phải chia hết cho (4n+3) hay (4n+3) là ước nguyên dương lơn hơn 3 của 187 là: 11;17;187.
- Nếu 4n+3=11 => n=2
- Nếu 4n+3=17 => n=7/2 - Loại vì không thuộc N
- Nếu 4n+3 = 187 => n=46
Vậy, với n = 2 hoặc n = 46 thì M là số tự nhiên.
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)