K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

ai làm giúp mìnk vs!!!

12 tháng 2 2016

help me!!!!!!!!!

19 tháng 12 2023

Em con quá non

22 tháng 3 2019

ĐÚNG RỒI NHA NHƯNG MÀ HƠI THIẾU

22 tháng 3 2019

đúng rồi bạn ơi !!!

mẹ mình là giáo viên dạy toán. Mình hỏi mẹ, mẹ nói là đúng rồi.

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

10 tháng 5 2021

Để \(A=\frac{4n-5}{n+1}\)là số nguyên thì \(4n-5⋮n+1\)

\(\Rightarrow\)\(4\left(n+1\right)-\left(4n-5\right)⋮n+1\)

\(\Rightarrow\)\(4n+4-4n+5⋮n+1\)

\(\Rightarrow\)\(9⋮n+1\)

\(\Rightarrow\)\(n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow\)\(n\in\left\{0;-2;2;-4;8;-10\right\}\)

10 tháng 5 2021

Để \(A\inℤ\) thì \(\frac{4n-5}{n+1}\inℤ\)

\(\Rightarrow4n-5⋮n+1\)

\(\Rightarrow4x+4-9⋮n+1\)

\(\Rightarrow4\left(n+1\right)-9⋮n+1\)

\(\Rightarrow9⋮n+1\)

Vì \(n\inℕ\) nên \(n+1\inℕ\)

\(\Rightarrow n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Ta có bảng sau:

n + 1139-1-3-9
n0 (thỏa mãn)2 (thỏa mãn)8 (thỏa mãn)-2 (loại)-4 (loại)-10 (loại)

Vậy \(n\in\left\{0;2;8\right\}\) thì \(A\inℤ\).

8 tháng 6 2016

\(M=\frac{5n+185+2n+1+n+7}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)

n là số tự nhiên thì (4n+3)>3

Để M là 1 số tự nhiên thì 187 phải chia hết cho (4n+3) hay (4n+3) là ước nguyên dương lơn hơn 3 của 187 là: 11;17;187.

  • Nếu 4n+3=11 => n=2
  • Nếu 4n+3=17 => n=7/2 - Loại vì không thuộc N
  • Nếu 4n+3 = 187 => n=46

Vậy, với n = 2 hoặc n = 46 thì M là số tự nhiên.

30 tháng 3 2020

ai biết làm câu nào thì làm giúp mik nha

30 tháng 3 2020

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)