Cho 2 đa thức P(x)=2x3+10x2-6x+7
Q(x)=-2x3-8x2+6x-7
Chứng minh rằng ko tồn tại giá trị nào của x để 2 đa thức P(x) và Q(x) cùng có giá trị âm
GIÚP MK VỚI, LÀM ƠN!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=2x^3+10x^2-6x+7;Q=-2x^3-10x^2+6x-7+2x^2=-P+2x^2\)
Như vậy \(P+Q=2x^2\ge0.\)
Nếu P và Q cùng âm thì ta thấy ngay \(P+Q< 0\)(Vô lý)
Vậy P và Q không thể cùng âm.
Chúc em luôn học tập tốt :)))
Ta có :
M + N = 6x2 + 3xy - 2y2 + ( 3y2 - 2x2 - 3xy )
= 6x2 + 3xy - 2y2 + 3y2 - 2x2 - 3xy
= 4x2 + y2 ( đoạn này mình làm hơi tắt sry nha)
Do 4x2 + y2 \(\ge\)0
Suy ra : M + N \(\ge\) 0 <=> M và N \(\ge\)0
Do đó không tồn tại giá trị nào của x để 2 đa thức M và N có cùng giá trị âm
Đặt \(X=M+N=4x^2+y^2\)
Vì \(4x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
\(X\ge0\forall x\)
Vậy...