K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
$x^2-2y^2=5\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên 

$x^2-2y^2=5$

$\Leftrightarrow (2k+1)^2-2y^2=5$

$\Leftrightarrow 2k^2+2k-y^2=2$

$\Rightarrow y$ chẵn. Đặt $y=2t$ với $t$ nguyên

PT trở thành: $2k^2+2k-4t^2=2$
$\Leftrightarrow k^2+k-2t^2=1$

Điều này vô lý do $k^2+k-2t^2=k(k+1)-2t^2$ chẵn còn $1$ thì lẻ

Vậy pt vô nghiệm.

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

20 tháng 5 2019

Đáp án: D

Để hệ phương trình có nghiệm thì phương trình (1) có nghiệm, tức là:

Vậy giá trị lớn nhất của m để hệ phương trình có nghiệm là 6.

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.

9 tháng 6 2017

Tìm được m = 25

24 tháng 7 2019

Ta có  2 x + y = 5 m − 1 x − 2 y = 2

⇔ y = 5 m − 1 − 2 x x − 2 5 m − 1 − 2 x = 2 ⇔ y = 5 m − 1 − 2 x 5 x = 10 m

⇔ x = 2 m y = m − 1

Thay vào x 2   –   2 y 2   =   − 2 ta có

x 2 – 2 y 2 = − 2 ⇔ ( 2 m 2 ) – 2 ( m − 1 ) 2   = − 2 ⇔ 2 m 2 + 4 m = 0 ⇔ m = 0 m = − 2    

Vậy m ∈ {−2; 0}

Đáp án: C

25 tháng 3 2018

Ta có

2 x + 3 y = 7 2 − m 4 x − y = 5 m ⇔ 4 x + 6 y = 7 − 2 m 4 x − y = 5 m ⇔ 7 y = 7 − 7 m 4 x − y = 5 m ⇔ y = 1 − m 4 x − 1 − m = 5 m ⇔ y = 1 − m x = 4 m + 1 4

Đáp án: B

30 tháng 12 2017

25 tháng 1 2018

Đặt  t = f ( x ) = x 2 - 4 x + 5 .

ta có  f ' ( x ) = x - 2 x 2 - 4 x + 5 và  f ' = 0 ⇔ x = 2

Xét x> 0 ta có bảng biến thiên

xcYYcaULZJEJ.png

Khi đó phương trình đã cho trở thành  m= t2+ t- 5hay  t2+ t- 5-m= 0       (*) 

Nếu phương trình (* ) có nghiệm t1; t2  thì t1+ t2= -1.

Do đó (*) có nhiều nhất 1 nghiệ m t ≥  1.

Vậy phương trình đã cho có đúng 2 nghiệm dương khi và chỉ khi phương trình (*) có đúng 1 nghiệm t  (1; 5).

+  Đặt  g(t) = t2+ t- 5. Ta đi tìm m để phương trình (*)  có đúng 1 nghiệm t  (1; 5).

Ta có g’(t) = 2t + 1 > 0, ∀  (1; 5).

Bảng biến thiên:

I30XFFvx62AZ.png

Từ bảng biến thiên suy ra  là các giá trị cần tìm.

Chọn  B.