cho ABCD có cạnh là 8 cm, MNQP là trung điểm AB,BC,CD,DA.HỎI chu vi MNPQ là ?
Giúp hộ nhé ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: AB+BC>AC
AD+DC>AC
Do đó: AB+BC+AD+DC>2AC
AB+AD>BD
CB+CD>BD
DO đó:AB+AD+CB+CD>2BD
=>\(2\cdot C_{ABCD}>2\cdot\left(AC+BD\right)=2\cdot12=24\)
=>CABCD>12
Gọi O là giao điểm của AC và BD
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2
Từ (1) và (2) suy ra MNPQ là hình bình hành
\(C_{MNPQ}=MN+MQ+PQ+MN=AC+BD=12cm\)
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
P là trung điểm DC(gt)
Q là trung điểm AD(gt)
=> PQ là đường trung bình
=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\) Tứ giác MNPQ là hình bình hành
b) Xét tam giác ABD có:
M là trung điểm AB(gt)
Q là trung điểm AD(gt)
=> MQ là đường trung bình \(\Rightarrow MQ=\dfrac{1}{2}BD\)
CMTT: NP là đường trung bình của tam giác BDC
\(\Rightarrow NP=\dfrac{1}{2}BD\)
Ta có: \(P_{MNPQ}=MN+NP+PQ+QM=\dfrac{1}{2}AC+\dfrac{1}{2}BD+\dfrac{1}{2}AC+\dfrac{1}{2}BD=AC+BD\)
Câu này dễ mà.Mình học lớp 7 mà mình còn biết nữa đó.Chắc bạn thắc mắc là vì sao mình học lớp 7 mà mình biết bài lớp 8 đúng không.Tại vì mình có thi học sinh giỏi và đạt giải nhì vòng trường lớp 6 luôn đấy,thấy mình giỏi không.
Xét ΔABD có
F là trung điểm của AB
H là trung điểm của AD
Do đó: FH là đường trung bình của ΔBAD
Suy ra: \(FH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔCBD có
E là trung điểm của BC
G là trung điểm của CD
Do đó: EG là đường trung bình của ΔCBD
Suy ra: \(EG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EG=FH