2.2..2.2..2.2..2.2..2.2..2.2.2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{2.2.2.....2}\)
= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
=> 2A = \(2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)
= \(2\times\frac{1}{2}+2\times\frac{1}{2^2}+2\times\frac{1}{2^3}+...+2\times\frac{1}{2^{50}}\)
= \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)
Lấy 2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)
A = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{50}}\)
= \(1-\frac{1}{2^{50}}\)
Vậy \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{2.2.2.....2}\)= \(1-\frac{1}{2^{50}}\)
a, A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2...2 ( 22...2 có 16 số 2)
A = 2 + 22 + 23 + 24 + ... + 216
2A = 22 + 23 + 24 + 25 + ... + 217
2A - A = ( 22 + 23 + 24 + 25 + ... + 217) - ( 2 + 22 + 23 + 24 + ... + 216)
A = 217 - 2
b, B = 1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28
1/2 x B = 1/2 + 1/6 + 1/12 + ... + 1/56
1/2 x B = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/7x8
1/2 x B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
1/2 x B = 1 - 1/8 = 7/8
B = 7/8 : 1/2
B = 7/8 x 2 = 7/4
a, A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2...2 ( 22...2 có 16 số 2)
A = 2 + 22 + 23 + 24 + ... + 216
2A = 22 + 23 + 24 + 25 + ... + 217
2A - A = ( 22 + 23 + 24 + 25 + ... + 217) - ( 2 + 22 + 23 + 24 + ... + 216)
A = 217 - 2
b, B = 1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28
1/2 x B = 1/2 + 1/6 + 1/12 + ... + 1/56
1/2 x B = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/7x8
1/2 x B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
1/2 x B = 1 - 1/8 = 7/8
B = 7/8 : 1/2
B = 7/8 x 2 = 7/4
\(H=\frac{2\cdot2}{1\cdot5}+\frac{2\cdot2}{5\cdot9}+...+\frac{2\cdot2}{45.49}\)
\(H=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+...+\frac{4}{45\cdot49}\)
\(H=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{45}-\frac{1}{49}\)
\(H=1-\frac{1}{49}\)
\(H=\frac{48}{49}\)
\(H=\frac{2.2}{1.5}+\frac{2.2}{5.9}+\frac{2.2}{9.13}+...+\frac{2.2}{45.49}\)
\(\Rightarrow H=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{45.49}\)
\(\Rightarrow H=\frac{5-1}{1.5}+\frac{9-5}{5.9}+...+\frac{49-45}{45.49}\)
\(\Rightarrow H=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{45}-\frac{1}{49}\)
\(\Rightarrow H=1-\frac{1}{49}=\frac{48}{49}\)
đặt tử là T ta có:
2T=2(1+2+22+23+...+22015)
2T=2+22+23+...+22016
2T-T=(2+22+23+...+22016)-(1+2+22+23+...+22015)
T=22016-1
thay T vào tử của S ta được:\(S=\frac{2^{2016}-1}{1-2^{2016}}=-1\)