ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(\Leftrightarrow\left\{{}\begin{matrix}2AB=24\\AB-AC=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=12\\AC=5\end{matrix}\right.\)
=>BC=13
4: \(\Leftrightarrow\left\{{}\begin{matrix}2AB=16\\AB-AC=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\\AC=6\end{matrix}\right.\)
=>BC=10
5: \(\Leftrightarrow\left\{{}\begin{matrix}2AB=56\\AB-AC=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=28\\AC=21\end{matrix}\right.\)
=>BC=35
Lời giải:
3.
$AB=(17+7):2=12$ (cm)
$AC=(17-7):2=5$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13$ (cm)
Các câu sau làm tương tự.
a) Ta có:
\(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3}\) và \(\frac{{AC'}}{{AC}} = \frac{5}{{15}} = \frac{1}{3}\).
b) Vì \(B'E//BC\) và\(B'E\) cắt \(AC\) tại \(E\) nên theo định lí Thales ta có:
\(\frac{{AB'}}{{AB}} = \frac{{AE}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AE}}{{15}} \Rightarrow AE = \frac{{2.15}}{6} = 5cm\)
c) Ta có: \(AE = AC' = 5cm\).
d) Điểm \(E \equiv C'\) và đường thẳng \(B'C' \equiv B'E\).
ta có ac x ac =acc
=> c x c = ..c
vì c là số có 1 chữ số nên c có thể = 1,2,3...9
=> c có thể =0,1,5,6
mà ac x ac = acc => c = 0
a0 x a0 = a00. vậy a = 1
=> 10 x 10 = 100
BC=căn 3^2+4^2=5cm
AB/BC=3/5
AC/BC=4/5
AB/AC=3/4
AC/AB=4/3
??????
Có 320 người chia thành 5 nhóm, mỗi nhóm có 8 hàng. Hỏi mỗi hàng có bao nhiêu người? [Có 2 cách]