K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2020

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

2 tháng 8 2017

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

2 tháng 8 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

31 tháng 7 2015

A=1.2+2.3+...+n(n+1)

3A=1.2.3+2.3.3+....+3n(n+1)

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=n(n+1)(n+2)/3 (đpcm)

31 tháng 7 2015

A=1.2+2.3+....+n(n+1)

3A=1.2.3+2.3.3+....+3n(n+1)

3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)

3A=n(n+1)(n+2)

A=n(n+1)(n+2)/3 (đpcm)

 

26 tháng 10 2016

Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :

Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)

=> Bài toán đã được cm

\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right)n}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n-1.n}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=-\left(1-\frac{1}{n}\right)\)

\(=-\frac{n-1}{n}\)

16 tháng 9 2019

\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(A=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(A=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\right)\)

\(\Rightarrow A=-\left(1-\frac{1}{n}\right)\)

3 tháng 2 2020

Ta có: \(\frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(...........\)

\(\frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=1-\frac{1}{n}\)

3 tháng 2 2020

Có:

\(\frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...................

\(\frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}\)