K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔADB vuông tại D và ΔADC vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

10 tháng 5 2015

A B C H D E

a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...

Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC

=>HB=HC

b) Ta có HB+HC=BC

=>HB=HC=BC/2=8/2=4cm

Ap dụng định lí Py-ta-go vào tam giác BAH ta có

AH2+BH2=AB2

   AH2=AB2-BH2

  AH2= 52-42

AH2=25-16=9

=>AH=3

C)Xét tam giác vuông BDH và CEH ta có 

HB=HC(theo câu a)

Góc B=C(Vì tam giác ABC cân ở A)

=>tam giác BDH=CEH(ch-gn)

=>HD=HE(tương ứng)

Vậy tam giác HDE có HD=HE nên cân ở H

 

21 tháng 4 2017

a) xet tam giac abd va tam giac aed co

bad=ead

ad la canh chung

abd=aed=900

=>tam giac abd= tam giac aed

=>bd=ed

22 tháng 4 2017

còn b,c,d thì s

28 tháng 4 2018
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC
11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
   AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
   AH mũ 2 + 4 mũ 2    = 5 mũ 2 
   AH mũ 2 + 16           = 25
   AH mũ 2                  = 25 - 16
   AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=) HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=) HD<HC

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C

Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
 AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2    = 5 mũ 2 
AH mũ 2 + 16           = 25
AH mũ 2                  = 25 - 16
AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=> HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=> HD<HC

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0

a: Xét ΔBAD vuông tại B và ΔBED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

Do đó: ΔBAD=ΔBED

b: Xét ΔBDK vuông tại B và ΔEDC vuông tại E có 

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔBDK=ΔEDC

Suy ra: BK=EC

Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC