Câu 1.10:
Tính:
1/2*4 + 1/4*6 + 1/6*8 + ........ + 1/96*98 + 1/98*100
Giá trị của biểu thức trên là ...........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=100+98+96+...+2-97-95-...-1\)
\(A=100+\left(98-98\right)+\left(96-95\right)+...+\left(2-1\right)\)
\(A=100+1+1+...+1\)
\(A=100+1\cdot49\)
\(A=100\cdot49\)
\(A=4900\)
\(B=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302\)
\(B=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(298-299-300+301\right)+302\)
\(B=1+0+0+...+302\)
\(B=1+302\)
\(B=303\)
Cách 1 : A=100+98+96+...+2-97-95-...-1
A= 100 + (98-97) + (96-95) + ... +(2-1)
Từ 1 đến 98 có 98 số => có 98 : 2 cặp mà hiệu = 1
A = 100 + 49 x 1 = 149
B = 1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
B = 1 + 2 + (302 - 300) + (301 - 299) + ... + (10 - 8) + (9-7) + (6-4) + (5-3)
Từ 3 đến 302 có 300 số => có 300 : 2 cặp hiệu = 2
B = 1 + 2 + 150 x 2 = 303
Cách 2 :
A = 100 + (98-97) + (96-95) + ……. + (2-1)
Ta thấy: 97; 95; ….; 1 có (97 – 1) : 2 + 1 = 49 (số hạng)
A = 100 + (1+1+1+….+1) (có 49 số 1).
A = 100 + 49 = 149
a, A = 100+(98-97)+(86-95)+....+(2-1) = 100+1+1+...+1 (49 số 1) = 149
b, B = 1+(2-3-4+5)+(6-7-8+9)+....(297-298-299+330)+331-332
= 1+0+0+....+0+331-332 = 0
Nếu đúng thì k mk nha
= 1/2 -1/4 + 1/4 - 1/6 + 1/6 + 1/8 + ... + 1/96 - 1/98 + 1/98 - 1/100
= 1/2 - 1/100
= 49/10
a=100+98+96+...+2-97-95-...-1
ta thấy từ 1 dến 100 có 50 số lẻ, 50 số chẵn
theo bài ra , ta có : 49 số lẻ ( ko có số 99 )
49 số chẵn ( trừ số 100 )
ta lấy lần lượt 1 số chẵn trừ đi 1 số lẻ như sau:
A=100+(98-97)+(96-95)+...+(2-1)
= 100+1+1+...+1
= 100+1.49
= 100+49
= 149
B=1+2-3-4+5+6-7-8+9+10-11-12+...-299-330+301+302
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+...+(298-299-300+301)+302
= 1+0+0+0+,...+0+302
= 303
Viết tập hợp a=x-y với x thuộc {26;70;38} y thuộc {17;41;98;49}
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
A=100+(98-97)+(96-95)+...+(2-1)
=100+1+1+1+...+1
Từ 2 đến 98 có
(98-2):2+1=49 (số hạng)
=>A=100+1.49
=100+49
=149