K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10

Lời giải:

Ta có:

$2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Rightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Ta thấy: $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Khi đó: \(N=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=(1+1)(1+1)(1+1)=8\)

1 tháng 2 2017

22 tháng 5 2022

P≤a2+2aab+2b2+b2+22bc+2c2+c2+22ca+2a2

P≤(a+2b)2+(b+2c)2+(c+2a)2

P≤(1+2)(a+b+c)=1+2

Dấu "=" xảy ra khi (a;b;c)=(0;0;1) và các hoán vị

27 tháng 12 2016

Giải nhanh dùm mem đi

27 tháng 12 2016

phan h nhan vo la duoc

6 tháng 11 2018

\(\text{Ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0.\)

\(\Leftrightarrow bc+ac+ab=0\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ac=-bc-ab\\ab=-bc-ac\end{cases}}\)

\(\Rightarrow BT\text{hức}=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{bc}{a^2-ac-ab+bc}+\frac{ac}{b^2-bc-ab+ac}+\frac{ab}{c^2-bc-ac+ab}\)

\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ac}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{bc}{\left(a-c\right)\left(a-b\right)}-\frac{ac}{\left(b-c\right)\left(a-b\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc\left(b-c\right)-ac\left(a-c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{b^2c-bc^2-a^2c+ac^2+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{c\left(b^2-a^2\right)-c^2\left(b-a\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a+b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{c\left(c-b\right)-a\left(c-b\right)}{\left(b-c\right)\left(a-c\right)}=\frac{\left(a-c\right)\left(b-c\right)}{....}=1\)

Lâu ko lm đổi dấu hơi thừa ra!! ko hiểu chỗ nào thì ib mk giải thích cho

19 tháng 5 2020

20=890=869=9986=8676=855=648

16 tháng 9 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)

\(\Leftrightarrow bc+ca+ab=0\)

\(\Leftrightarrow\hept{\begin{cases}bc=-ab-ca\\ca=-ab-bc\\ab=-ca-bc\end{cases}}\)

Ta có : \(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)

\(\Leftrightarrow A=\frac{a^2}{a^2+bc-ab-ca}+\frac{b^2}{b^2+ac-ab-bc}+\frac{c^2}{c^2+ab-ca-bc}\)

\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)

\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a+b\right)\left(a-b\right)\left(b-c\right)-\left(b+c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(\Leftrightarrow A=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)

3 tháng 12 2023

a, b, c chưa khác 0 bạn nhé