Cho tam giác ABC có M, N, P lần lượt là trung điểm ba cạnh BC, CA và AB. Tam giác MNP có
tâm đường tròn ngoại tiếp là J( 3;4) và trọng tâm G( 1;2) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.
A.I(1;0) B.I(3; 2) C.I( 5;6) D.I( 2;3).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bán kính bằng 2,5 => chu vi bằng 2,5 . 2 . số pi = khoảng 15 ,7
kết quả là 15,7 nha !
Có MNPA là hcn (đường TB) => MNPA cùng thuộc đường tròn. CÓ MP là đường chéo hcn => là đường kính hình tròn
https://scontent-hkg3-1.xx.fbcdn.net/hphotos-xfa1/v/t1.0-9/10257284_226132444248207_6976770560449147924_n.jpg?oh=12c1cd68165b4b582425168184b12d12&oe=57850391
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác B D C ^
Ta có K Q C ^ = 2 K M C ^ (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))
N D C ^ = K M C ^ (góc nội tiếp cùng chắn cung N C ⏜ )
Mà B D C ^ = 2 N D C ^ ⇒ K Q C ^ = B D C ^
Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở ⇒ B C D ^ = B C Q ^ do vậy D, Q, C thẳng hàng nên KQ//PK
Chứng minh tương tự ta có ta có D, P, B thẳng hàng và DQ//PK
Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).
Chọn B