$\left(2x+1\right)^2=\frac{1}{9}$
help mik vs ;v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-\frac{3}{4}x+\frac{1}{6}x=1-2\frac{5}{9}\)
\(\left(-\frac{3}{4}+\frac{1}{6}\right).x=1-\frac{23}{9}\)
\(-\frac{7}{12}.x=-\frac{14}{9}\)
\(x=-\frac{14}{9}:\left(-\frac{7}{12}\right)\)
\(x=\frac{8}{3}\)
Vậy x = ...
b) \(\left|2x-\frac{3}{8}\right|+2\frac{3}{4}=3\frac{1}{16}\)
\(\left|2x-\frac{3}{8}\right|+\frac{11}{4}=\frac{49}{16}\)
\(\left|2x-\frac{3}{8}\right|=\frac{49}{16}-\frac{11}{4}\)
\(\left|2x-\frac{3}{8}\right|=\frac{5}{16}\)
\(\Rightarrow\left|2x-\frac{3}{8}\right|\in\text{{}\frac{5}{16};-\frac{5}{16}\)}
Nếu, \(2x-\frac{3}{8}=\frac{5}{16}\)
\(2x=\frac{11}{16}\)
\(x=\frac{11}{32}\)
Nếu, \(2x-\frac{3}{8}=-\frac{5}{16}\)
\(2x=\frac{1}{16}\)
\(x=\frac{1}{32}\)
Vậy \(x\in\text{{}\frac{1}{32};\frac{11}{32}\)}
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)
b, Làm tương tự nha bn
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
\(\left(2x+1\right)^2=\dfrac{1}{9}\)
⇒ \(\left[{}\begin{matrix}2x+1=\dfrac{1}{3}\\2x+1=-\dfrac{1}{3}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
(2x+1)\(^2\)=(1/3)\(^2\)
TH1: 2x+1=1/3 TH2:2x+1=-1/3
2x =1/3-1 2x =-1/3-1
2x =-2/3 2x =-4/3
x =-2/3:2 x =-4/3:2
x =-1/3 x =-2/3
Vậy x∈{-1/3;-2/3}