x2-1+x2-2+....+x2-2015+x2-2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+4}-\dfrac{1}{x^2+5}+\dfrac{1}{x^2+3}-\dfrac{1}{x^2+4}+\dfrac{1}{x^2+2}-\dfrac{1}{x^2+3}-\dfrac{1}{x^2+2}+\dfrac{1}{x^2+1}=-1\)
\(\Leftrightarrow\dfrac{1}{x^2+1}-\dfrac{1}{x^2+5}=-1\)
\(\Leftrightarrow\dfrac{\left(x^2+5\right)-\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2+5\right)}=\dfrac{-1\left(x^2+1\right)\left(x^2+5\right)}{\left(x^2+1\right)\left(x^2+5\right)}\)
Suy ra: \(x^2+5-x^2-1=-\left(x^4+6x^2+5\right)\)
\(\Leftrightarrow4+x^4+6x^2+5=0\)
\(\Leftrightarrow x^4+6x^2+9=0\)
\(\Leftrightarrow\left(x^2+3\right)^2=0\)(Vô lý)
Vậy: \(S=\varnothing\)
\(\left(x^2+5\right)\left(x^2+4\right)+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
\(\Leftrightarrow\)\(\dfrac{x^4+9x^2+20}{\left(x^2+4\right)\left(x^2+3\right)\left(x^2+2\right)\left(x^2+1\right)}+\dfrac{1\left(x^2+2\right)\left(x^2+1\right)}{\left(x^2+4\right)\left(x^2+3\right)\left(x^2+2\right)\left(x^2+1\right)}+\dfrac{1\left(x^2+4\right)\left(x^2+1\right)}{\left(x^2+3\right)\left(x^2+2\right)\left(x^2+1\right)\left(x^2+4\right)}+\dfrac{1\left(x^2+4\right)\left(x^2+3\right)}{\left(x^2+2\right)\left(x^2+1\right)}=-\dfrac{\left(x^2+4\right)\left(x^2+3\right)\left(x^2+2\right)\left(x^2+1\right)}{\left(x^2+4\right)\left(x^2+3\right)\left(x^2+2\right)\left(x^2+1\right)}\)
\(\left(x^2+5\right)\left(x^2+4\right)+\left(x^2+2\right)\left(x^2+1\right)+\left(x^2+4\right)\left(x^2+1\right)+\left(x^2+4\right)\left(x^2+3\right)=\left(x^2+4\right)\left(x^2+3\right)\left(x^2+2\right)\left(x^2+1\right)\)
\(\left(x^2+4\right)\left(x^2+5+x^2+1+x^2+3\right)+\left(x^2+2\right)\left(x^2+1\right)\left(1-\left(x^2+4\right)\left(x^2+3\right)\right)=0\)
cau 1 :
A=1+2+2^2+...+2^2015
2A=2+2^2+2^3+...+2^1026
lay 2A-A ta duoc:
A= 2^2016-1
cau 2 : cho f(x)=10x
ta co: f(x1)=10x1
f(x2)= 10x2
ma x1= 2.x2
=> f(x1)=10x1
f(x2)=10x1.2
nhu vay f(x1)<f(x2)
tick nha
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
x2.2016-[(1+2016).2016):2]
=x2.2016-2033136