K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016
  1. x-y-xy=3 =>xy=x-y-3(1)
  2. x^2+xy+y^2=1=>(x+y)^2-xy=1

=>(x+y)^2-x+y+3=1

kết hợp với (1) giải ra

20 tháng 3 2016

kết quả là X=1 và Y=-1

28 tháng 5 2017

19 tháng 9 2017

Đáp án: D

29 tháng 12 2017

Trừ vế cho vế phương trình (1) cho (2) ta được:

x 2 + y 2 − y = − 1 ⇔ x 2 + y 2 − y + 1 = 0

Ta có:

x 2 ≥ 0 , ∀ x y 2 − y + 1 = y − 1 2 2 + 3 4 > 0 , ∀ y ⇒ x 2 + y 2 − y + 1 > 0 ,   ∀ x , y

Do đó phương trình x 2 + y 2 − y + 1 = 0 vô nghiệm

Vậy không tồn tại giá trị của xy

Đáp án cần chọn là: D

26 tháng 9 2017

Đáp án A

29 tháng 4 2018

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy hệ phương trình có hai nghiệm (x; y) = (0; 2); (x; y) = (2; 0) Từ giả thiết x > y nên x = 2; y = 0  ⇒ xy = 0

21 tháng 4 2019

Điều kiện: xy > 0

2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2   = 0 ⇔ x = y

Thay x = y vào x + y + x y = 16 ta được

2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4

Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)

Khi đó  x y = 4 4 = 1

Đáp án:D

10 tháng 6 2017

Điều kiện y ≠ 0

Hệ phương trình tương đương với x + y + x y = 7    ( 1 ) x x y + 1 = 12    ( 2 )

Từ (1) và x, y là số nguyên nên y là ước của x

Từ (2) ta có x là ước của 12

Vậy có duy nhất một nghiệm nguyên x = 3, y = 1 nên xy = 3

Đáp án cần chọn là: C

14 tháng 9 2017

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

14 tháng 9 2017

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

13 tháng 4 2019

Phương trình  1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y

Trường hợp 1:  x = - y  thay vào (2) ta được  x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3

Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).

Trường hợp 2:  2 x = y  thay vào (2) ta được  - 5 x 2 + 17 x + 3 = 0  phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).

Đáp án cần chọn là: C