cmr: 2x^2-4x+7 là vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
Giải:
Giả sử hai phương trình trên đều có nghiệm, tức là:
\(\left\{\begin{matrix} \Delta_1'=1+6m>0\\ \Delta_2'=19-m^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{-1}{6}\\ -\sqrt{19}< m<\sqrt{19}\end{matrix}\right.\)
Để CM ít nhất một trong hai phương trình vô nghiệm, ta cần chỉ ra hệ bất phương trình trên vô nghiệm, từ đó dẫn đến vô lý, điều giả sử là sai
Nhưng hệ bất phương trình trên có tập nghiệm \(m\in \left(\frac{-1}{6},\sqrt{19}\right)\).
Đơn giản, thử thay \(m=1\) ta thấy cả hai phương trình đều có nghiệm.
Do đó, bài toán sai =)))
xet x^2 +4x+20 = ( x^2 + 4x + 4) + 16 =(x+2)^2 +16 > 0 \(\forall\) x \(\varepsilon\) R
\(1;\left\{{}\begin{matrix}mx+2y=7\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7-mx}{2}\\2x+\dfrac{3\left(7-mx\right)}{2}=5\left(1\right)\end{matrix}\right.\)
\(hệ\) \(pt\) \(có\) \(nghiệm\) \(duy\) \(nhất\Leftrightarrow\left(1\right)có\) \(ngo\) \(duy\) \(nhất\)
\(\left(1\right)\Leftrightarrow\dfrac{4x+3\left(7-mx\right)}{2}=5\Leftrightarrow4x+21-3mx=10\Leftrightarrow x\left(4-3m\right)=-11\)
\(với:m\ne\dfrac{4}{3}\) \(thì\) \(hpt\) \(có\) \(ngo\) \(duy-nhất\left(x;y\right)=\left\{\dfrac{-11}{4-3m};\dfrac{7-m\left(\dfrac{-11}{4-3m}\right)}{2}\right\}\)
\(2,\left\{{}\begin{matrix}2x-y=m\\-4x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x-m\\-4x+2\left(2x-m\right)=4\left(1\right)\end{matrix}\right.\)
hệ pt vô nghiệm khi (1) vô nghiệm
(1)\(\Leftrightarrow-4x+4x-2m=4\Leftrightarrow m=-2\Rightarrow m=-2\)
thì hệ pt có vô số nghiệm
\(\Rightarrow m\ne-2\) thì hpt vô nghiệm
Bài 1 :
a) x^2 + 5x = 0
x(x+ 5 ) = 0
=> x = 0 hoặc x + 5 = 0
=> x = 0 và x = -5
b tương tự
c ) 3x^2 - 5x - 8 = 0
3x^2 - 8x + 3x - 8 = 0
=> x ( 3x - 8 ) + 3x - 8 = 0
=> ( x+ 1 )( 3x - 8 ) = 0
=> x+ 1 = 0 hoặc 3x - 8 = 0
=> x = -1 hoặc x = 8/3
(+) d tương tự
Bài 2 :
x^2 + 2x + 7 = x^2 + x + x + 1 + 6 = x(x+1)+ x +1 + 6 = ( x+ 1 )(x+1) +6 = ( x+ 1 )^2 + 6
Vì ( x+ 1 )^2 >=0 => ( x+ 1 )^2 + 6 > 0
=> vô nghiệm