Cho A= 1/4+1/16+1/36+...+1/10000
Chứng minh: A<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\)
Ta có: \(A=\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}\)
\(\Rightarrow A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)
\(\Rightarrow A< \frac{1}{4}.\frac{99}{50}\)
\(\Rightarrow A< \frac{99}{200}< \frac{1}{2}\)
Vậy: \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}\left(đpcm\right)\)
Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{4}+\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=\frac{1}{4}+\frac{1}{4}\cdot B\)
Ta có \(\frac{1}{2^2}< \frac{1}{1\cdot2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{4}\cdot1=\frac{1}{2}\)
a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...
b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
Thay B vào A ta được:
\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)
Vậy....
c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)
Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)
Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)
d, chắc là đề sai
e, giống câu a
Đề phải là \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) chứ ?
Ta có : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{2500}\right)\)
\(=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Ta lại có : \(\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{4}\left(2-\frac{1}{50}\right)=\frac{1}{4}.\frac{99}{50}=\frac{99}{200}\)
Mà \(\frac{99}{200}< \frac{1}{2}\)\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{99}{200}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) ( đpcm )
\(\text{Đặt BT là A }\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(\text{Ta có:}\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\text{(để lại }\frac{1}{4}\text{ở đầu)}\)
\(\frac{1}{4^2}>\frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
.......
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\Rightarrow A=\frac{7}{12}-\frac{1}{101}=\frac{707-12}{1212}=\frac{695}{1212}>\frac{606}{1212}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}\)
S = \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+......+\dfrac{1}{10000}\)
\(\Rightarrow S=\dfrac{1}{4.1}+\dfrac{1}{4.4}+\dfrac{1}{4.9}+.....+\dfrac{1}{4.2500}\)
\(\Rightarrow S=\dfrac{1}{4.\left(1+\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{2500}\right)}< \dfrac{1}{2}\)
\(\RightarrowĐPCM\)
Đặt \(M=\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{10000}\)
\(M=\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+......+\frac{1}{100.100}\)
\(=\frac{1}{2.2}\left(1+\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{50.50}\right)\)
\(< \frac{1}{2.2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{50}\right)< \frac{1}{4}.\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)
Vậy \(M< \frac{1}{2}\)
Đặt S=1/4+1/16+1/36+...+1/10000
S= 1/4x(1+1/4+1/9+...+1/2500)
S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)
S< 1/4x(1+1/1x2+1/2x3+...1/49x50)
S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)
S< 1/4x(1+1-1/50)
S< 1/4x(2-1/50)<2/4(2/4=1/2)
S< 1/2
S=\(\frac{1}{4}\)(1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}+...+\frac{1}{50^2}\)
S<\(\frac{1}{4}\)(1+\(\frac{1}{2.1}\)+\(\frac{1}{3.2}+...+\frac{1}{50.49}\))
S<\(\frac{1}{4}\)(1+1−\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\))
S<\(\frac{1}{4}\)(2−\(\frac{1}{50}\))<\(\frac{2}{4}\)=\(\frac{1}{2}\)(đpcm)