Cho tam giác ABC cân tại A. Trên tia đối của BA lấy D, trên tia đối của CA lấy E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với BC. Chứng minh rằng tam giác AHD = tam giác AKE. Bạn nào giải nhanh giúp mình nhé. Mình đang cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
HAE = HAB + BAE
KAD = KAC + CAD
mà HAB = KAC (tam giác AHB = tam giác AKC)
=> HAE = KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE (chứng minh trên)
HAE = KAD (chứng minh trên)
AH = AK (tam giác AHB = tam giác AKC)
=> Tam giác AHE = Tam giác AKD (c.g.c)
Chúc bạn học tốt
a) Xét ΔΔvuông HBD và ΔΔvuông KCE, có:
BD=CE (gt)
B1ˆB1^=B2ˆB2^ (đối đỉnh)
C1ˆC1^=C2ˆC2^(đối đỉnh)
Mà B1ˆB1^=C1ˆC1^(gt)
nên B2ˆB2^=C2ˆC2^
Do đó:ΔΔ HBD = ΔΔKCE (c.h-g.n)
=>HB=CK (2 cạnh tương ứng)
b)Xét ΔΔAHB và ΔΔAKC có:
HB=CK (c/m trên)
AB=AC (gt)
ABHˆABH^=ACKˆACK^ (vì ABHˆABH^=1800-B1ˆB1^ ; ACKˆACK^=180o-C1ˆC1^ mà B1ˆB1^=C1ˆC1^)
c)
Do đó: ΔΔAHB = ΔΔAKC (c-g-c)
=>AHBˆAHB^=AKCˆAKC^ (2 góc tương ứng)
a, Vì \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{HBD}=\widehat{KCE}\) ( vì là các góc đối đỉnh )
Xét hai tam giác vuông là \(\Delta HBD\) và \(\Delta KCE\) ta có:
\(BD=CE\left(gt\right),\widehat{HBD}=\widehat{KCE}\left(cmt\right)\Rightarrow\Delta HBD=\Delta KCE\) ( cạnh huyền - góc nhọn )
=> HB = CK ( 2 cạnh tương ứng ) ( ĐPCM )
b, Vì \(\Delta ABC\) cân tại A => AB = AC
Vì \(\widehat{ABC}=\widehat{ACB}\Rightarrow180^o-\widehat{ABC}=180^o-\widehat{ACB}\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Xét \(\Delta AHB\) và \(\Delta AKC\) ta có:
\(AB=AC\left(cmt\right),\widehat{ABH}=\widehat{ACK}\left(cmt\right),HB=CK\left(cmt\right)\)\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)( ĐPCM )
c, Vì \(AB=AC,BD=CE\Rightarrow AB+BD=AC+CE\Rightarrow AD=CE\)
\(\Rightarrow\Delta ADE\) cân tại A \(\Rightarrow\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Vì \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{ADE}\)
Mà \(\widehat{ABC}\) và \(\widehat{ADE}\) nằm ở bị trí đồng vị => HK song song với DE ( ĐPCM )
d, Vì \(\Delta HBD=\Delta KCE\Rightarrow DH=EK\) ( 2 cạnh tương ứng )
\(\widehat{BDH}=\widehat{CEK}\) ( 2 góc tương ứng ) \(\widehat{ADH}=\widehat{AEK}\)
Xét \(\Delta AHD\) và \(\Delta AKE\) ta có:
\(AD=AE\left(cmt\right),\widehat{AEK}=\widehat{ADH}\left(cmt\right),BD=CE\left(gt\right)\)
\(\Rightarrow\Delta AHD=\Delta AKE\left(c.g.c\right)\) ( ĐPCM )
Xét tg ahd và tg ake
+có : ae+ec=ac
và ad+db=ab
mà :ad=ae ; bd=ce
=>AE=AD (1)
+có : góc AHD+ gócDHB=gócADH
và góc AKE+ góc EKC= góc AKC
=> gócAHD=gócAEK(2)
+ tg bdh=tg eck(vì : EC=BD; góc B= góc B và vuông tại D và D =90)
=>DB=EK (3)
Từ (1)(2) và (3) suy ra : tg AHD= tg AKEB(cgc)