S = -1 + ( -2 ) + 3 + 4 + ... + ( - 97 ) + ( - 98 ) + 99 + 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100
5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5
5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)
5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)
5S = 97.98.99.100.101
S= 97.98.99.100.101/5
S=1901009880
S=1*2*3*4+2*3*4*5+....+97*98*99*100
5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5
5S=1.2.3.4.(5-0)+2.3.4.5.(6-1)+...+97.98.99.100.(101-96)
5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
5S=(1.2.3.4.5+2.3.4.5.6+...+97.98.99.100.101)-(0.1.2.3.4+1.2.3.4.5+...+96.97.98.99.100)
5S=97.98.99.100.101
S=9505049400:5=1901009880.
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
1, số số hạng là :
(100 - 1) + 1=100 (số)
Tổng là :
( 100 + 1 )x 100 : 2 = 5050
2, Số số hạng
(100 - 2 ) : 2 +1 = 45(số)
Tổng là :
( 100 +2) x 45 :2 =2295
\(\text{S=1 - 2 + 3 - 4 + 5 - 6 + ...+ 97 - 98 + 99 -100.}\)
\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+......+\left(97-98\right)+\left(99-100\right)\)(50 cặp )
\(S=-1.50\)
\(S=-50\)
Vậy S= -50
Hok tốt !
\(S=1-2+3-4+5-6+...+97-98+99-100\)
\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(97-98\right)+\left(99-100\right)\)
\(S=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)+\left(-1\right)\)
\(S=\left(-1\right)\cdot50\)
\(S=-50\)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
Lời giải:
$S=[(-1)+(-2)+3+4]+[(-5)+(-6)+7+8]+....+[(-97)+(-98)+99+100]$
$=\underbrace{4+4+....+4}_{25}=4.25=100$