K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

x + 3y = 10 <=> x = 10 - 3y thay vào D ta được:

D = (10 - 3y)2 + y2 = 100 - 60y + 9y2 + y2 

D = 10y2 - 60y + 100 = 10(y2 - 6y + 10) 

D = 10(y2 -2y3 + 9 + 1) = 10[(y - 3)2 + 1]

D = 10(y - 3)2 + 10 \(\ge\)10

Dấu "=" xảy ra khi: y - 3 = 0 <=> y = 3

=> x = 10 - 3y = 10 - 3.3= 1

Vậy gtnn D = 10 khi x = 1, y = 3

27 tháng 12 2021

tìm giá trị nhỏ nhất hay lớn nhất vậy bạn?

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

5 tháng 12 2023

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

26 tháng 9 2021

\(A=-\left|x-7\right|+2\le2\\ A_{max}=2\Leftrightarrow x-7=0\Leftrightarrow x=7\\ B=-5-\left|2x+3\right|\le-5\\ A_{max}=-5\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)

`B = x^2- 2xy + y^2 + 2x - 10y + 17

`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`

`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.

 

26 tháng 7 2023

Mik cảm ơn

19 tháng 2 2019

Bài 2

Ta có :

\(3y^2-12=0\)

\(3y^2=0+12\)

\(3y^2=12\)

\(y^2=12:3\)

\(y^2=4\)

\(\Rightarrow y=\pm2\)

b) \(\left|x+1\right|+2=0\)

\(\left|x+1\right|=0+2\)

\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

19 tháng 2 2019

\(N=\frac{3}{2x^2+6}\)

Ta có: \(x^2\ge0\Rightarrow2x^2+6\ge6\)

\(\Rightarrow N_{Max}=\frac{3}{2x^2+6}=\frac{3}{6}=1,5\)

\(\Leftrightarrow2x^2+6=6\Leftrightarrow x=0\)