Cho x+3y>=1 . Giá trị nhỏ nhất của biểu thức là A=x^2+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x\ge3y-1\) (gt).
\(\Rightarrow A=x^2+y^2\ge\left(3y-1\right)^2+y^2=9y^2-6y+1+y^2=10y^2-6y+1=10\left(y-\frac{3}{10}\right)^2+\frac{1}{10}\)
\(\Rightarrow A\ge\frac{1}{10}\Rightarrow GTNN\left(A\right)=10\)
Dấu "=" xảy ra khi \(y=\frac{3}{10};x=\frac{1}{10}\).
Sửa giùm mình lại chỗ: \(x\ge1-3y\) nha, mình viết nhầm.
Do x+ y= 1 nên
S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y , d o x + y = 1 = 16 x 2 y 2 - 2 x y + 12
Đặt t= xy . Do x≥ 0 ; y≥0 nên
0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4
Xét hàm số f(t) = 16t2- 2t + 12 trên [0 ; 1/4].
Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16 .
Bảng biến thiên
Từ bảng biến thiên ta có:
m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ; m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2
Vậy giá trị lớn nhất của S là 25/2 đạt được khi
x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2
giá trị nhỏ nhất của S là 191/ 16 đạt được khi
Chọn A.
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
GTNN bằng 5,5 khi y=-3/4
Min =5,5 ..check mk nhá