CMR
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}\)<1
VỚI N THUỘC N sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
Ta có :
\(N=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Ta thấy : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.......
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)
\(\Rightarrow\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< 1.\frac{1}{2^2}\)
\(\Rightarrow N< \frac{1}{4}\)(ĐPCM)
Ủng hộ mk nha !!! ^_^
Ta thấy: 1+ 2/ n^2+3n = n^2+3n+2 / n(n+3) =(n+1)(n+2) /n(n+3)
Áp dụng công thức trên,ta có:
A= (1+2/4 )(1+ 2/10)(1+2/18).....(1+2/ n^2+3n)
=(1+2 /1x4)( 1+2 /2x5)(1+2 /3x6).....[ (n+1)(n+2)/ n(n+3)]
=(2x3 /1x4)(3x4 /2x5)(4x5 /3x6).....[ (n+1)(n+2) /n(n+3)]
= 3x(n+1 /n+3)
Vì n+1 /n+3 <1 với mọi n thuộc N nên 3x(n+1 /n+3) <3
Vậy A<3
Ta thấy: k thuộc N* nên \(\sqrt{k+1}>\sqrt{k}\)
\(\Rightarrow\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{2}{\left(2\sqrt{k+1}\right).\left(\sqrt{k+1}.\sqrt{k}\right)}< \frac{2}{\left(\sqrt{k+1}.\sqrt{k}\right).\left(\sqrt{k+1}+\sqrt{k}\right)}\)
\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}.\sqrt{k}\right)\left(k+1-k\right)}=2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
\(\Rightarrow\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)(đpcm).
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{n\left(+1\right)}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(+1\right)}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
=1-\(\frac{1}{1+n}\)
Vì n thuộc N => +1>0 => 1-\(\frac{1}{n+1}\)<1
Vậy biểu thức trên luôn nhỏ hơn 1