Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,15x-8x=9`
`<=>7x=9`
`<=>x=9/7`
`b,(x+3)(x-5)=0`
`<=>` $\left[ \begin{array}{l}x+3=0\\x-5=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-3\end{array} \right.$
Vậy `S={-3,5}`
Bài 2:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a, Xét ΔDBAΔDBA và ΔABCΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA=ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)
Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)
Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA
Bạn bị nhầm ở câu tính AD.
\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
\(BC^{ }=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có BD là p/g \(\widehat{ABC}\),theo t/c ta có:
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}hay\dfrac{DC}{10}=\dfrac{AD}{6}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{DC}{10}=\dfrac{AD}{6}=\dfrac{DC+AD}{10+6}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}DC=10.\dfrac{1}{2}=5\left(cm\right)\\AD=6.\dfrac{1}{2}=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: \(\widehat{ABD}+\widehat{BDA}=\widehat{BAD}=90^o\)
\(\widehat{DBH}+\widehat{BIH}=\widehat{BHI}=90^o\)
Mà \(\widehat{ABD}=\widehat{DBH}\)(DB là p/g \(\widehat{ABC}\)) ⇒\(\widehat{BDA}=\widehat{BIH}\)
Lại có \(\widehat{AID}=\widehat{BIH}\)( 2 góc đối đỉnh)
⇒\(\widehat{BDA}=\widehat{AID}\)
⇒ΔAID cân tại A
c) Xét ΔABD và ΔHBI có:
\(\widehat{BAD}=\widehat{BHI}=90^o\left(gt\right)\)
\(\widehat{ABD}=\widehat{IBH}\)(BD là p/g \(\widehat{ABC}\))
⇒ΔABD ~ ΔHBI(g-g)
⇒\(\dfrac{AD}{IH}=\dfrac{BD}{BI}\)⇒\(\dfrac{AD}{BD}=\dfrac{IH}{BI}\)
Mà AD=AI(ΔAID cân tại A)⇒\(\dfrac{AI}{BD}=\dfrac{IH}{BI}\Rightarrow AI.BI=BD.IH\left(đpcm\right)\)
Bài 3:
a: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hình bình hành
Hình bình hành ABNC có AB=AC
nên ABNC là hình thoi
b: Ta có:ABNC là hình thoi
=>AB//NC
mà D\(\in\)NC
nên AB//CD
Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
=>AD=BC
c: Xét ΔADN vuông tại A có \(DN^2=AD^2+AN^2\)
=>\(DN^2=9^2+12^2=225\)
=>\(DN=\sqrt{225}=15\left(cm\right)\)
Xét ΔAND vuông tại A có AH là đường cao
nên \(AH\cdot ND=AN\cdot AD\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=108/15=7,2(cm)
Bài 4:
a: Xét tứ giác AEMN có
AE//MN
AN//ME
Do đó: AEMN là hình bình hành
Hình bình hành AEMN có AM là phân giác của góc EAN
nên AEMN là hình thoi
b: Ta có; ΔABC cân tại A
mà AM là đường phân giác
nên AM\(\perp\)BC và M là trung điểm của BC
Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
M,N lần lượt là trung điểm của BC,CA
=>MN là đường trung bình của ΔABC
=>MN//AB và MN=AB/2
Ta có: MN=AB/2
MN=MD/2
Do đó: AB=MD
Xét tứ giác ABMD có
DM//AB
DM=AB
Do đó: ABMD là hình bình hành
c: Xét tứ giác AMCD có
N là trung điểm chung của AC và MD
=>AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
d: Để ADCM là hình vuông thì AM=CM
=>AM=BC/2
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)