tìm 2 chữ số tận cùng của :2^2015+2^2016+2^2017 giải toán casio nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
1) Tìm 2 chữ số tận cùng của \(A=2^{2015}+2^{2016}+2^{2017}\)
Ta sẽ tìm 2 chữ số của từng số hạng, rồi cộng các tổng
*) 2 chữ số tận cùng của \(2^{2015}\) có nghĩa là \(2^{2015}:100\)
Ta có: \(2^{10}\equiv24\left(mod100\right)\)
\(\left(2^{10}\right)^5\equiv24^5\equiv24\left(mod100\right)\)
\(\left(2^{50}\right)^4\equiv24^4\equiv76\left(mod100\right)\)
\(\left(2^{200}\right)^5\equiv76^5\equiv76\left(mod100\right)\)
\(\left(2^{1000}\right)^2\equiv76^2\equiv76\left(mod100\right)\)
=> \(2^{2000}\cdot2^{15}\equiv76\cdot68\equiv5168\left(mod100\right)\)
=> 2 chữ số tận cùng của 22015 là 68 (1)
Tương tự với 22016 và 22017
*) => \(2^{2000}\cdot2^{16}\equiv76\cdot36\equiv2736\left(mod100\right)\)
=> 2 chữ số tận cùng của 22016 là 36 (2)
*) \(2^{2000}\cdot2^{17}\equiv76\cdot72\equiv5472\left(mod100\right)\)
=> 2 chữ số tận cùng của \(2^{2017}\) là 72 (3)
Từ (1), (2) , (3) ta có:
\(A=2^{2015}+2^{2016}+2^{2017}\equiv68+36+72\equiv176\left(mod100\right)\)
Vậy 2 chữ số tận cùng của A là 76
Bài 2: Bài này thì dễ hơn, bn cx tìm đồng dư của số đó với 100 là ra! Nếu cần lời giải chi tiết thì nói vs mk
2n luôn có tận cùng là 2. Vậy cái tổng trên có tận cùng là 6. Còn 2 chữ số tận cùng thì chỉ nằm trong 16;26;...;96. Có 9 phương án bạn giải toán casio thì thử từng cái một xem cái nào đúng.
2n luôn có tận cùng là 2. Vậy cái tổng trên có tận cùng là 6. Còn 2 chữ số tận cùng thì chỉ nằm trong 16;26;...;96. Có 9 phương án bạn giải toán casio thì thử từng cái một xem cái nào đúng nhé !