K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

Lời giải:

a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)

Vậy: \(A>\frac{1}{2}\)

b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)

\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{​​}\text{​​}\text{​​}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)

=> \(B\text{​​}\text{​​}\text{​​}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)

Vậy: \(B>1\)

c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)

Vậy: \(C< 2\)

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

5 tháng 8 2017

Ta có : B = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 nên B sẽ có 5 số hạng

Và 1/3 = 10/30

Mà : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 > 1/30 x 10

Nên : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 > 10/30

=> 1/11 + 1/12 + 1/13 + 1/14 + 1/15 > 1/3

Chứng minh với 1/2 tương tự

14 tháng 3 2018

\(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)

\(+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)

\(\Rightarrow A< \frac{1}{10}\cdot10+\frac{1}{20}\cdot10+\frac{1}{30}\cdot10+...+\frac{1}{60}\cdot10\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{6}\)

\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\left(\frac{1}{4}+\frac{1}{5}\right)\)

\(A< 2+0,45< 2,5\)

14 tháng 3 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\right)+\left(\frac{1}{30}+...+\frac{1}{30}\right)+...+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)\)

\(A>\frac{1}{2}+\frac{1}{3}+..+\frac{1}{7}\)

\(A>\frac{223}{140}>\frac{4}{3}\)

https://olm.vn/hoi-dap/detail/54833154236.html

25 tháng 4 2016

S> 3/15 .5

S>1

S< 3/10x5=3/2 <2 

25 tháng 4 2016

cậu giải chi tiết hơn đc ko