Cho hai số thực dương x, y thỏa mãn: x.y=2. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{x}+\dfrac{1}{2y}+\dfrac{1}{x+2y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)
Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)
\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)
\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)
\(P=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{1+\dfrac{y}{x}}\)
Đặt \(\dfrac{y}{x}=a\ge4\Rightarrow P=\dfrac{2a^2-2a+1}{a+1}=2a-4+\dfrac{5}{a+1}\)
\(P=\dfrac{a+1}{5}+\dfrac{5}{a+1}+\dfrac{9}{5}.a-\dfrac{21}{5}\ge2\sqrt{\dfrac{5\left(a+1\right)}{5\left(a+1\right)}}+\dfrac{9}{5}.4-\dfrac{21}{5}=5\)
Dấu "=" xảy ra khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
Nguyễn Việt Lâm Giáo viên làm thế nào để có thể nghĩ được ra như vậy?
\(x+y\le xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\le1\)
\(M=\dfrac{1}{2\left(x^2+y^2\right)+y^2}+\dfrac{1}{2\left(x^2+y^2\right)+x^2}\le\dfrac{1}{4xy+y^2}+\dfrac{1}{4xy+x^2}\)
\(B\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)+\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{x^2}\right)=\dfrac{1}{25}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}+\dfrac{6}{xy}\right)\)
\(M\le\dfrac{1}{25}\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right]=\dfrac{1}{10}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le\dfrac{1}{10}\)
\(M_{max}=\dfrac{1}{10}\) khi \(x=y=2\)
Sử dụng BĐT cộng mẫu:
\(\dfrac{1}{xy}+\dfrac{1}{xy}+\dfrac{1}{xy}+\dfrac{1}{xy}+\dfrac{1}{y^2}\ge\dfrac{\left(1+1+1+1+1\right)^2}{xy+xy+xy+xy+y^2}=\dfrac{25}{4xy+y^2}\)
\(\Rightarrow\dfrac{1}{4xy+y^2}\le\dfrac{1}{25}\left(\dfrac{4}{xy}+\dfrac{1}{y^2}\right)\)
\(y\ge xy+1\ge2\sqrt{xy}\Rightarrow\sqrt{\dfrac{y}{x}}\ge2\Rightarrow\dfrac{y}{x}\ge4\)
\(Q=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{\dfrac{y}{x}+\left(\dfrac{y}{x}\right)^2}\)
Đặt \(\dfrac{y}{x}=a\ge4\)
\(Q=\dfrac{2a^2-2a+1}{a^2+a}=\dfrac{2a^2-2a+1}{a^2+a}-\dfrac{5}{4}+\dfrac{5}{4}=\dfrac{\left(a-4\right)\left(3a-1\right)}{4\left(a^2+1\right)}+\dfrac{5}{4}\ge\dfrac{5}{4}\)
\(Q_{min}=\dfrac{5}{4}\) khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)
\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)
\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)
\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)
\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)
\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)
\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)