\(x\left(8x^2-36x+53\right)=25+\sqrt[3]{3x-5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
\(\Leftrightarrow\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)
\(\Leftrightarrow3x-5+\sqrt[3]{3x-5}=\left(2x-3\right)^3+2x-3\)
Đặt \(\left\{{}\begin{matrix}2x-3=a\\\sqrt[3]{3x-5}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a=b^3+b\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+1\right]=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x-3=\sqrt[3]{3x-5}\)
\(\Leftrightarrow\left(2x-3\right)^3=3x-5\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
3√3x−5=8x3−36x2+53x−253x−53=8x3−36x2+53x−25
PT⇔3√3x−5=(2x−3)3−(x−2)PT⇔3x−53=(2x−3)3−(x−2)
Đặt y=3√3x−5⇒{y3=3x−5=(2x−3)+(x−2)y=(2x−3)3−(x−2)y=3x−53⇒{y3=3x−5=(2x−3)+(x−2)y=(2x−3)3−(x−2)
⇒y3+y=(2x−3)3+(2x−3)⇒y3+y=(2x−3)3+(2x−3) (1)
Xét hàm: f(t)=t3+tf(t)=t3+t
có f′(t)=3t2+1>0f′(t)=3t2+1>0 nên là hàm đồng biến (2)
Từ (1) và (2) suy ra y=2x−3y=2x−3
Đến đây thay vào , giải PT bậc 3
Chỉ bk lm trừ, ko bk lm cộng
a: Ta có: \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3\le0\)
hay \(x\le3\)
b: Ta có: \(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\Leftrightarrow2x-5\le0\)
hay \(x\le\dfrac{5}{2}\)
\(\Leftrightarrow8x^3-36x^2+51x-22+2x-3-\sqrt[3]{3x-5}=0\)
\(\Leftrightarrow8x^3-36x^2+51x-22+\dfrac{8x^3-36x^2+51x-22}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}=0\)
\(\Leftrightarrow\left(8x^3-36x^2+51x-22\right)\left(1+\dfrac{1}{\left(2x-3\right)^2+\left(2x-3\right)\sqrt[3]{3x-5}+\sqrt[3]{\left(3x-5\right)^2}}\right)=0\)
\(\Leftrightarrow8x^3-36x^2+51x-22=0\)
\(\Leftrightarrow\left(x-2\right)\left(8x^2-20x+11\right)=0\)
\(\Leftrightarrow...\)
Cho mk hỏi chỗ này ạ