K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

Tính A

\(A=2\frac{2}{35}^3-\frac{2^3}{63}-\frac{2}{99}^3-\frac{2}{143}^3-\frac{2}{195}^3-\frac{2}{255}^3-\frac{2}{323}^3\)

giải cả bài nha

13 tháng 4 2016

\(A=2-\left(\frac{2^3}{25}+\frac{2^3}{63}+...+\frac{2^3}{255}+\frac{2^3}{323}\right)\)

\(=2-4.\left(\frac{2}{35}+\frac{2}{63}+...+\frac{2}{255}+\frac{2}{323}\right)\)

\(=2-4.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{15.17}+\frac{2}{17.19}\right)\)

\(=2-4.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\right)\)

\(=2-4.\left(\frac{1}{5}-\frac{1}{19}\right)\)

\(=2-4.\frac{14}{95}=2-\frac{56}{95}=\frac{134}{95}\)

 

19 tháng 6 2017

\(A=\frac{2}{3}+\frac{2}{15}+...+\frac{2}{143}\)

\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{11\cdot13}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)

\(A=1-\frac{1}{13}=\frac{12}{13}\)

19 tháng 6 2017

   \(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)

\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(=1-\frac{1}{13}\)

\(=\frac{12}{13}\)

25 tháng 7 2018

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\frac{14}{15}\)

\(=\frac{7}{15}\)

25 tháng 7 2018

Sửa đề chút nhé:

\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).0\)

\(=0\)

Ý b tham khảo bài bạn nguyen thi thuy linh nhé