cho hảm số y=3x-1
a)Tính giá trị hàm số f(x) tại giá trị của x mà x thỏa mãn /x-1/=2x+1
b)Tìm gía trị của x biết rằng f(3x-1)=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: đồ thị hàm số y đi qua điểm A có hoành độ là a+1 và tung độ là a2 - a
=> a2 - a = a(a+1) + 4
=> a2-a = a2 + a +4
=> -2a = 4
=> a= -2
b) Có: f(3x-1)= -2(3x-1)+4= -6x + 2+4= -6x + 6
f(1-3x)= -2(1-3x) + 4 = -2 + 6x + 4 = 6x +2
Mà f(3x-1)=f(1-3x)
=> -6x + 6 = 6x+2
=> -12x= -4 => x= 13
b, x=\(\frac{1}{3}\)nhé. Mình viết thiếu
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
a, Ta có : \(\left|x-1\right|=2x+1\)
\(\orbr{\begin{cases}x-1=2x+1\\x-1=-2x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}-x=2\\3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}}\)
* Trường hợp 1 : \(y=3x-1\Leftrightarrow y=6-1=5\)
* Trường hợp 2 : \(y=2x+1\Leftrightarrow y=0+1=1\)
b, Theo bài ra ta có : \(f\left(3x-1\right)=-1\)hay
\(3.\left(-1\right)-1=-3-1=-4\)