K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

chän nthbbrg

10 tháng 7 2021

Kẻ OH vuông góc với xy suy ra OH ≤ OA . Mặt khác A nằm trong đường tròn (O;R) nên OA ≤ R

10 tháng 7 2021

cảm ơn bạn nhé

 

 

3 tháng 7 2018

25 tháng 10 2023

a: Xét (O) có

MA,MN là tiếp tuyến

=>MA=MN

mà OA=ON

nên OM là đường trung trực của AN

=>OM\(\perp\)AN(1)

Xét (O) có
ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

=>AN\(\perp\)NB(2)

Từ (1) và (2) suy ra OM//NB

b: Xét ΔMAO vuông tại A và ΔKOB vuông tại O có

AO=OB

\(\widehat{AOM}=\widehat{OBK}\)

Do đó: ΔMAO=ΔKOB

=>MA=KO

Xét tứ giác MAOK có

MA//OK

MA=OK

Do đó: MAOK là hình bình hành

mà \(\widehat{MAO}=90^0\)

nên MAOK là hình chữ nhật

=>KM\(\perp\)xy

 

19 tháng 9 2018

a/ Xét tg vuông AOH và tg vuông IOK có

\(OI\perp AH;KI\perp AO\Rightarrow\widehat{KIO}=\widehat{HAO}\)

\(\Rightarrow\Delta AOH\) đồng dạng với \(\Delta IOK\)(Hai tg vuông có hai góc nhọn tương ứng bằng nhau) (1)

b/

Từ (1) \(\Rightarrow\frac{OK}{OH}=\frac{OI}{OA}\Rightarrow OH.OI=OK.OA\)

Ta có \(OA\perp BC\)(Hai tiếp tuyến xuất phát từ 1 điểm ngoài đường tròn thì đường thẳng nối điểm đó với tâm vuông góc và chia đôi dây cung tạo bởi hai tiếp điểm)

Xét tg vuông ABO có \(OB^2=OK.OA=3\) không đổi

\(\Rightarrow OH.OI\)không đổi mà OH không đổi => OI không đổi

Mà H; O cố định => I cố định => Khi A chay trên xy thì BC luôn đi qua điểm I cố định

19 tháng 11 2018

bạn ơi ko có hingf ak

1 tháng 12 2017

27 tháng 10 2017

O B C K I A H

a) Xét tam giác vuông ABO có đường cao BK, áp dụng hệ thức lượng trong tam giác ta có: 

\(OB^2=OK.OA\Rightarrow5^2=OK.10\Rightarrow OK=2,5\left(cm\right)\)

b) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.

Vậy thì \(\widehat{BOA}=\widehat{COA}\)

Suy ra \(\Delta ABO=\Delta ACO\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

Vậy nên AC là tiếp tuyến của đường tròn (O).

c) Ta thấy ngay \(\Delta KOI\sim\Delta HOA\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OK}{OH}\Rightarrow OI=\frac{OK.OA}{OH}\)

Xét tam giac vuông ABO có BK là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(OK.OA=OB^2=R^2\) không đổi. Lại có OH cũng không đổi (bằng khoảng cách từ O tới đường thẳng xy)

Vậy nên \(OI=\frac{R^2}{OH}\) không đổi.

Vậy khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.