rút gọn biểu thức 5 -(y+49)+29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\sqrt{144}-5\sqrt{49}+\dfrac{1}{2}\sqrt{36}\)
\(=3.12-5.7+\dfrac{1}{2}.6\)
\(=36-35+3=4\)
\(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1\)
\(A=\frac{49^{24}.125^{10}.2^8-5^{30}.7^{49}.4^5}{5^{29}.16^2.7^{43}}\)
\(A=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}\)
\(A=\frac{5^{30}.7^{48}.2^8.\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}=5.7^3.\left(1-7.2^2\right)=1715.\left(-27\right)=-46305\)
\(A=\frac{\left(7^2\right)^{24}.\left(5^3\right)^{10}.2^8-5^{30}.7^{49}.\left(2^2\right)^5}{5^{29}\left(2^4\right)^2.7^{43}}=\frac{7^{48}.5^{30}.2^8-5^{30}.7^{49}.2^{10}}{5^{29}.2^8.7^{43}}=\frac{7^{48}.5^{30}.2^8\left(1-7.2^2\right)}{5^{29}.2^8.7^{43}}\)
=\(7^5.5.\left(-27\right)=-2268945\)
Bạn rút từ trong căn trước:
căn của 29-12 căn 5 ta biến đổi thành:
(2 căn 5 ) bình- 2.2 căn 5. 3 + 9
= ( 2 căn 5 -3 )2
rút gọn rồi ta sẽ ra kết quả
=\(\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}\)
=\(\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
=\(\sqrt{5}-\sqrt{3-l2\sqrt{5}-3l}\)
=\(\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)(vi \(2\sqrt{5}-3\)>0)
=\(\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
=\(\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)
=\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
=\(\sqrt{5}-l\sqrt{5}-1l\)
=\(\sqrt{5}-\sqrt{5}+1\)(vi \(\sqrt{5}-1\)>0)
=1
a)
\(\left(3-\sqrt{15}\right)\sqrt{4+\sqrt{15}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{5+2\sqrt{15}+3}}{\sqrt{2}}\\ =\left(3-\sqrt{15}\right)\cdot\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}\\ =\left(\sqrt{9}-\sqrt{15}\right)\cdot\dfrac{\left|\sqrt{5}+\sqrt{3}\right|}{\sqrt{2}}\)
\(=\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\) (vì \(\sqrt{5}+\sqrt{3}>0\))
\(=\sqrt{3}\cdot\dfrac{3-5}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-2}{\sqrt{2}}\\ =\sqrt{3}\cdot\dfrac{-\sqrt{4}}{\sqrt{2}}\\ =-\sqrt{6}\)
b)
\(\sqrt{29-12\sqrt{5}}-\sqrt{24-8\sqrt{5}}\\ =\sqrt{20-2\cdot3\cdot2\sqrt{5}+9}-\sqrt{20-2\cdot2\cdot2\sqrt{5}+4}\\ =\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}-3\right|-\left|2\sqrt{5}-2\right|\)
\(=2\sqrt{5}-3-\left(2\sqrt{5}-2\right)\) (vì \(2\sqrt{5}-3>0;2\sqrt{5}-2>0\))
\(=2\sqrt{5}-3-2\sqrt{5}+2\\ =-1\)
Bài giải
Ta có: \(\frac{49+\left(-49\right).\left(-2\right)}{7.21}\)
= \(\frac{49.1+49.2}{7.21}\)
= \(\frac{49.\left(1+2\right)}{7.21}\)
= \(\frac{49.3}{7.21}\)
= \(\frac{7.7.3}{7.7.3}\)
= \(1\)