Biết : \(5x^2+\frac{5}{4}y^2-3xy+\frac{2}{3}x+\frac{1}{3}y+\frac{1}{9}=0\). Tính : 6x + 3y - 2010.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\left(1\right)\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\left(2\right)\end{cases}}\)
\(ĐK:x>-1;y\ge1\)
Đặt \(\sqrt{x+1}=u,\sqrt{y-1}=v\left(u>0,v\ge0\right)\Rightarrow\hept{\begin{cases}x=u^2-1\\y=v^2+1\end{cases}}\)
Khi đó, phương trình (1) trở thành: \(\left(u^2-v^2-2\right)^2+4=3\left(v^2+1\right)-5\left(u^2-1\right)+2uv\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4-3v^2+5u^2-8-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2-2\right)^2+4\left(u^2-v^2-2\right)+4+u^2+v^2-2uv=0\)
\(\Leftrightarrow\left(u^2-v^2\right)^2+\left(u-v\right)^2=0\)\(\Leftrightarrow\left(u-v\right)^2\left[\left(u+v\right)^2+1\right]=0\)
Dễ thấy \(\left(u+v\right)^2+1>0\)nên \(\left(u-v\right)^2=0\Leftrightarrow u=v\)
hay \(\sqrt{x+1}=\sqrt{y-1}\Leftrightarrow x+1=y-1\Leftrightarrow y=x+2\)
Từ (2) suy ra \(3xy-5y-6x+11=5\sqrt{x^3+1}\)(3)
Thay y = x + 2 vào (3), ta được: \(3x\left(x+2\right)-5\left(x+2\right)-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2+6x-5x-10-6x+11=5\sqrt{x^3+1}\)
\(\Leftrightarrow3x^2-5x+1=5\sqrt{x^3+1}\)
\(\Leftrightarrow3\left(x^2-x+1\right)-2\left(x+1\right)-5\sqrt{x+1}\sqrt{x^2-x+1}=0\)
\(\Leftrightarrow\left(3\sqrt{x^2-x+1}+\sqrt{x+1}\right)\left(\sqrt{x^2-x+1}-2\sqrt{x+1}\right)=0\)
Dễ thấy \(3\sqrt{x^2-x+1}+\sqrt{x+1}>0\forall x>-1\)nên \(\sqrt{x^2-x+1}=2\sqrt{x+1}\)
\(\Leftrightarrow x^2-x+1=4\left(x+1\right)\Leftrightarrow x^2-5x-3=0\)
Giải phương trình trên tìm được hai nghiệm là \(\frac{5\pm\sqrt{37}}{2}\left(TMĐK\right)\)
+) Với \(x=\frac{5+\sqrt{37}}{2}\Rightarrow y=\frac{9+\sqrt{37}}{2}\)
+) Với \(x=\frac{5-\sqrt{37}}{2}\Rightarrow y=\frac{9-\sqrt{37}}{2}\)
Vậy hệ phương trình có 2 nghiệm\(\left(x;y\right)\in\left\{\left(\frac{5+\sqrt{37}}{2};\frac{9+\sqrt{37}}{2}\right);\left(\frac{5-\sqrt{37}}{2};\frac{9-\sqrt{37}}{2}\right)\right\}\)
\(a)\) Ta có :
\(\frac{x}{18}=\frac{y}{9}\)\(\Leftrightarrow\)\(\frac{x}{2}=y\)
\(\Rightarrow\)\(x=2y\)
Thay \(x=2y\) vào \(A=\frac{2x-3y}{2x+3y}\) ta được :
\(A=\frac{2.2y-3y}{2.2y+3y}=\frac{4y-3y}{4y+3y}=\frac{y}{7y}=\frac{1}{7}\)
Vậy ... ( tự kết luận )
Chúc bạn học tốt ~
\(x^2-3xy+\frac{9}{4}y^2=9\) \(\Rightarrow\left(x-\frac{3}{2}y\right)^2=9\)\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{2}y=3\\x-\frac{3}{2}y=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=3+\frac{3}{2}y\\x=\frac{3}{2}y-3\end{cases}}\)
Th1: Thay \(x=3+\frac{3}{2}y\) vào 2x - 3y + 1
Ta có: \(2\left(3+\frac{3}{2}y\right)-3y+1=6+3y-3y+1=7\)
Th2: Thay \(x=\frac{3}{2}y-3\) vào 2x - 3y + 1
Ta có: \(2\left(\frac{3}{2}y-3\right)-3y+1=3y-6-3y+1=-5\)
=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y
=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y
=11/2x^2+0-15x^3y^2+5/3y
=11/2x^2-15x^3y^2+5/3y
thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc
11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6
vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6
Tìm được x= -1/6 ; y = -1/3 . Suy ra 6x + 3y - 2010 = -1 + (-1) -2010 = -2012