cho C = 1+3+32+33 +...+311. chứng tỏ rằng C chia hết cho 40.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn
cho A = 1 + 3 + 32 + 33 + ... + 311
a ) chứng minh A chia hết cho 13
b) chứng minh A chia hết cho 40
A=1+3+3^2+3^3+...+3^98+3^99+3^100
A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
A=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy A chia hết cho 13
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
a, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 +...+ 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 1 + 3 2 + ... + 3 9 1 + 3 1 + 3 2
= 1 + 3 1 + 3 2 . 1 + 3 3 + . . . + 3 9
= 13. 1 + 3 3 + . . . + 3 9 ⋮ 13
b, C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 + 3 10 + 3 11
= 1 + 3 1 + 3 2 + 3 3 + 3 4 1 + 3 1 + 3 2 + 3 3 + 3 8 1 + 3 1 + 3 2 + 3 3
= 1 + 3 1 + 3 2 + 3 3 . 1 + 3 4 + 3 8
= 40. 1 + 3 4 + 3 8 ⋮ 40
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
\(C=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
C=1+3+32+...+311
3C = 3+32 + 33 +...+311 + 312
=> 3C - C = ( 3+32 + 33 +...+311 + 312 )- (1+3+32 + 33 +...+311) (SỬ DỤNG QUY TẮC DẤU NGOẶC )
3C-C=3+32+33+...+312-1-3-32-33-...-311 (SỬ DỤNG TÍNH CHẤT GIAO HOÁN CỦA PHÉP CỘNG )
3C-C=(3-3)+(32-32)+(33-33)+...+(311-311)+312-1
2C= 312 - 1
=> C = (312 - 1)/2 = 265720=6643.40 ( CHIA HẾT CHO 40 VÌ TÍCH CÓ THỪA SỐ 40)
Ta có
3C = 3+32 + 33 +...+311 + 312
=> 3C - C = 2C = 3+32 + 33 +...+311 + 312 - (1+3+32 + 33 +...+311)
= 312 - 1
=> C = (312 - 1)/2 = 265720
=> C chia hết cho 40 (vì 265720:40 = 6643)